Skip to main content

Identification of Low Allele Frequency Mosaic Mutations in Alzheimer Disease

  • Protocol
  • First Online:
Genomic Mosaicism in Neurons and Other Cell Types

Part of the book series: Neuromethods ((NM,volume 131))

Abstract

Germline mutations ofAPP,PSEN1, andPSEN2 genes cause autosomal dominant Alzheimer disease (AD). Somatic variants of the same genes may underlie pathogenesis in sporadic AD, which is the most prevalent form of the disease. Importantly, such somatic variants may be present at very low allelic frequency, confined to the brain, and are thus very difficult or impossible to detect in blood-derived DNA. Ever-refined methodologies to identify mutations present in a fraction of the DNA of the original tissue are rapidly transforming our understanding of DNA mutation and their role in complex pathologies such as tumors. These methods stand poised to test to what extend somatic variants may play a role in AD and other neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cruts M, Theuns J, Van Broeckhoven C (2012) Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat 33:1340–1344. doi:10.1002/humu.22117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rovelet-Lecrux A, Hannequin D, Raux G et al (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26. doi:10.1038/ng1718

    Article  CAS  PubMed  Google Scholar 

  3. Lodato MA, Woodworth MB, Lee S et al (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94–98. doi:10.1126/science.aab1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Upton KR, Gerhardt DJ, Jesuadian JS et al (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161:228–239. doi:10.1016/j.cell.2015.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Evrony GD, Lee E, Park PJ, Walsh CA (2016) Resolving rates of mutation in the brain using single-neuron genomics. elife. doi:10.7554/eLife.12966

  6. McConnell MJ, Lindberg MR, Brennand KJ et al (2013) Mosaic copy number variation in human neurons. Science 342:632–637. doi:10.1126/science.1243472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Evrony GD, Cai X, Lee E et al (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151:483–496. doi:10.1016/j.cell.2012.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aguzzi A, Lakkaraju AK (2015) Cell biology of prions and prionoids: a status report. Trends Cell Biol 26(1):40–51. doi:10.1016/j.tcb.2015.08.007.

    Article  PubMed  Google Scholar 

  9. Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16:109–120. doi:10.1038/nrn3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Auton A, Brooks LD, Durbin RM et al (2015) A global reference for human genetic variation. Nature 526:68–74. doi:10.1038/nature15393

    Article  PubMed  Google Scholar 

  11. Nussbaum R, McInnes RR, Willard HF (2007) Thompson & Thompson genetics in medicine, 7th edn. Saunders, Philadelphia

    Google Scholar 

  12. Alzualde A, Moreno F, Martinez-Lage P et al (2010) Somatic mosaicism in a case of apparently sporadic Creutzfeldt-Jakob disease carrying a de novo D178N mutation in the PRNP gene. Am J Med Genet B Neuropsychiatr Genet 153B:1283–1291. doi:10.1002/ajmg.b.31099

    Article  CAS  PubMed  Google Scholar 

  13. Tsiatis AC, Norris-Kirby A, Rich RG et al (2010) Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn 12:425–432. doi:10.2353/jmoldx.2010.090188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jamuar SS, Lam AT, Kircher M et al (2014) Somatic mutations in cerebral cortical malformations. N Engl J Med 371:733–743. doi:10.1056/NEJMoa1314432

    Article  PubMed  PubMed Central  Google Scholar 

  15. Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10(1):e1004126. doi:10.1371/journal.pgen.1004126

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175–188. doi:10.1038/nrg.2015.16

    Article  CAS  PubMed  Google Scholar 

  17. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  18. Sala Frigerio C, Lau P, Troakes C et al (2015) On the identification of low allele frequency mosaic mutations in the brains of Alzheimer’s disease patients. Alzheimers Dement 11:1265–1276. doi:10.1016/j.jalz.2015.02.007

    Article  PubMed  Google Scholar 

  19. Small SA, Duff K (2008) Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 60:534–542. doi:10.1016/j.neuron.2008.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H, Durbin R (2010) Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics 26:589–595. doi:10.1093/bioinformatics/btp698

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  22. McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi:10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. doi:10.1093/bioinformatics/btr509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koboldt DC, Zhang Q, Larson DE et al (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576. doi:10.1101/gr.129684.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cingolani P, Platts A, Wang le L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Flying 6:80–92. doi:10.4161/fly.19695

    CAS  Google Scholar 

  26. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. doi:10.1093/nar/gkq603

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kanagawa T (2003) Bias and artifacts in multitemplate polymerase chain reactions (PCR). J Biosci Bioeng 96:317–323. doi:10.1016/S1389-1723(03)90130-7

    Article  CAS  PubMed  Google Scholar 

  28. Gundry M, Vijg J (2011) Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants. Mutat Res 729:1–15. doi:10.1016/j.mrfmmm.2011.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schmitt MW, Kennedy SR, Salk JJ et al (2012) Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A 109:14508–14513. doi:10.1073/pnas.1208715109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith EN, Jepsen K, Khosroheidari M et al (2014) Biased estimates of clonal evolution and subclonal heterogeneity can arise from PCR duplicates in deep sequencing experiments. Genome Biol 15:420. doi:10.1186/s13059-014-0420-4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kennedy SR, Schmitt MW, Fox EJ et al (2014) Detecting ultralow-frequency mutations by duplex sequencing. Nat Protoc 9:2586–2606. doi:10.1038/nprot.2014.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lou DI, Hussmann JA, McBee RM et al (2013) High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proc Natl Acad Sci U S A 110:19872–19877. doi:10.1073/pnas.1319590110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dean FB, Hosono S, Fang L et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99:5261–5266. doi:10.1073/pnas.08208949999/8/5261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Bourcy CF, De Vlaminck I, Kanbar JN et al (2014) A quantitative comparison of single-cell whole genome amplification methods. PLoS One 9:e105585. doi:10.1371/journal.pone.0105585PONE-D-14-24544

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zafar H, Wang Y, Nakhleh L, et al (2016) Monovar: single-nucleotide variant detection in single cells. doi:10.1038/pj.2016.37

  36. Roth A, McPherson A, Laks E et al (2016) Clonal genotype and population structure inference from single-cell tumor sequencing. Nat Methods 13:573–576. doi:10.1038/nmeth.3867

    Article  CAS  PubMed  Google Scholar 

  37. Eirew P, Steif A, Khattra J et al (2014) Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518:422–426. doi:10.1038/nature13952

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610. doi:10.1021/ac202028g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geller LN, Potter H (1999) Chromosome missegregation and trisomy 21 mosaicism in Alzheimer’s disease. Neurobiol Dis 6:167–179. doi:10.1006/nbdi.1999.0236

    Article  CAS  PubMed  Google Scholar 

  40. Beck JA, Poulter M, Campbell TA et al (2004) Somatic and germline mosaicism in sporadic early-onset Alzheimer’s disease. Hum Mol Genet 13:1219–1224. doi:10.1093/hmg/ddh134ddh134

    Article  CAS  PubMed  Google Scholar 

  41. Proukakis C, Houlden H, Schapira AH (2013) Somatic alpha-synuclein mutations in Parkinson’s disease: hypothesis and preliminary data. Mov Disord 28:705–712. doi:10.1002/mds.25502

    Article  PubMed  PubMed Central  Google Scholar 

  42. Proukakis C, Shoaee M, Morris J et al (2014) Analysis of Parkinson’s disease brain-derived DNA for alpha-synuclein coding somatic mutations. Mov Disord 29:1060–1064. doi:10.1002/mds.25883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlo Sala Frigerio or Bart De Strooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Frigerio, C.S., Fiers, M., Voet, T., De Strooper, B. (2017). Identification of Low Allele Frequency Mosaic Mutations in Alzheimer Disease. In: Frade, J., Gage, F. (eds) Genomic Mosaicism in Neurons and Other Cell Types. Neuromethods, vol 131. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7280-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7280-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7279-1

  • Online ISBN: 978-1-4939-7280-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics