Advertisement

Single-Cell Whole Genome Amplification and Sequencing to Study Neuronal Mosaicism and Diversity

  • Patrick J. Reed
  • Meiyan Wang
  • Jennifer A. Erwin
  • Apuã C. M. Paquola
  • Fred H. GageEmail author
Protocol
Part of the Neuromethods book series (NM, volume 131)

Abstract

Neuronal mosaicism describes the extent of intercellular genotypic diversity within a single human brain. This somatic variability is driven by numerous mechanisms including errors in DNA replication acquired throughout development and by the activity of endogenous retrotransposons. The study of retrotransposition in neuronal mosaicism may prove crucial to understanding the true complexity of normal and aberrant brain function. Specifically, numerous lines of evidence suggest that retrotransposition specific aspects of neuronal mosaicism may contribute to the unresolved etiology of many neurologic and neuropsychiatric disorders. Here, we describe the SLAV-Seq method, a recent advancement in the field over previous approaches used to study the diversity of LINE-1 based neuronal mosaicism at the single-cell level. We describe in detail, methodology for the isolation of single cells from bulk tissue by FACS, the amplification of single-cell genomic DNA by multiple displacement amplification (MDA), the targeted enrichment of LINE-1 somatic events, and the sequencing of the LINE-1 enriched library. Finally, we discuss methods for the quantification and analysis of the neuronal mosaicism identified by SLAV-Seq and some of the current technical limitations.

Key words

SLAV-Seq Single cell Neuronal mosaicism Somatic mosaicism WGA MDA Retrotransposition LINE-1 

References

  1. 1.
    Azevedo FAC, Carvalho LRB, Grinberg LT et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541CrossRefPubMedGoogle Scholar
  2. 2.
    De S (2011) Somatic mosaicism in healthy human tissues. Trends Genet 27:217–223CrossRefPubMedGoogle Scholar
  3. 3.
    Muotri AR, Chu VT, Marchetto MCN et al (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910CrossRefPubMedGoogle Scholar
  4. 4.
    Evrony GD, Cai X, Lee E et al (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151:483–496CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Coufal NG, Garcia-Perez JL, Peng GE et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMedGoogle Scholar
  7. 7.
    Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Martin SL (1991) Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol 11:4804–4807CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Feng Q, Moran JV, Kazazian HH et al (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916CrossRefPubMedGoogle Scholar
  10. 10.
    Mathias SL, Scott AF, Kazazian HH Jr et al (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810CrossRefPubMedGoogle Scholar
  11. 11.
    Hancks DC, Kazazian HH (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22:191–203CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bundo M, Toyoshima M, Okada Y et al (2014) Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81:306–313CrossRefPubMedGoogle Scholar
  13. 13.
    Singer T, McConnell MJ, Marchetto MCN et al (2010) LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 33:345–354CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kalisky T, Blainey P, Quake SR (2011) Genomic analysis at the single-cell level. Annu Rev Genet 45:431–445CrossRefPubMedGoogle Scholar
  15. 15.
    Kurimoto K, Yabuta Y, Ohinata Y et al (2007) Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc 2:739–752CrossRefPubMedGoogle Scholar
  16. 16.
    Christopher Love J, Ronan JL, Grotenbreg GM et al (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24:703–707CrossRefPubMedGoogle Scholar
  17. 17.
    Choi JH, Ogunniyi AO, Du M et al (2010) Development and optimization of a process for automated recovery of single cells identified by microengraving. Biotechnol Prog 26:888–895CrossRefPubMedGoogle Scholar
  18. 18.
    Rettig JR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77:5628–5634CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang H, Liu K-K (2008) Optical tweezers for single cells. J R Soc Interface 5:671–690CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Emmert-Buck MR, Bonner RF, Smith PD et al (1996) Laser capture microdissection. Science 274:998–1001CrossRefPubMedGoogle Scholar
  21. 21.
    Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 1:586–603CrossRefPubMedGoogle Scholar
  22. 22.
    Navin N, Kendall J, Troge J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dalerba P, Kalisky T, Sahoo D et al (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29:1120–1127CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14:618–630CrossRefPubMedGoogle Scholar
  25. 25.
    Guo MT, Rotem A, Heyman JA et al (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–2155CrossRefPubMedGoogle Scholar
  26. 26.
    Telenius H, Carter NP, Bebb CE et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725CrossRefPubMedGoogle Scholar
  27. 27.
    Huang L, Ma F, Chapman A et al (2015) Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genomics Hum Genet 16:79–102CrossRefPubMedGoogle Scholar
  28. 28.
    Navin NE (2014) Cancer genomics: one cell at a time. Genome Biol 15:452CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dean FB, Nelson JR, Giesler TL et al (2001) Rapid amplification of plasmid and phage DNA using phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Blanco L, Bernad A, Lázaro JM et al (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940PubMedGoogle Scholar
  31. 31.
    Garmendia C, Bernad A, Esteban JA et al (1992) The bacteriophage phi 29 DNA polymerase, a proofreading enzyme. J Biol Chem 267:2594–2599PubMedGoogle Scholar
  32. 32.
    Lasken RS, Stockwell TB (2007) Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol 7:19CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang K, Martiny AC, Reppas NB et al (2006) Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol 24:680–686CrossRefPubMedGoogle Scholar
  34. 34.
    Esteban JA, Salas M, Blanco L (1993) Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J Biol Chem 268:2719–2726PubMedGoogle Scholar
  35. 35.
    Zong C, Lu S, Chapman AR et al (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338:1622–1626CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Erwin JA, Marchetto MC, Gage FH (2014) Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci 15:497–506CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Upton KR, Gerhardt DJ, Jesuadian JS et al (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161:228–239CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Erwin JA, Paquola ACM, Singer T et al (2016) L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 19(12):1583–1591CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dean FB, Hosono S, Fang L et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99:5261–5266CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ulahannan D, Kovac MB, Mulholland PJ et al (2013) Technical and implementation issues in using next-generation sequencing of cancers in clinical practice. Br J Cancer 109:827–835CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402CrossRefPubMedGoogle Scholar
  42. 42.
    Ross JS, Cronin M (2011) Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol 136:527–539CrossRefPubMedGoogle Scholar
  43. 43.
    Sun H-J, Chen J, Ni B et al (2015) Recent advances and current issues in single-cell sequencing of tumors. Cancer Lett 365:1–10CrossRefPubMedGoogle Scholar
  44. 44.
    Lodato MA, Woodworth MB, Lee S et al (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94–98CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. https://arxiv.org/abs/1303.3997
  46. 46.
    Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jurka J, Kapitonov VV, Pavlicek A et al (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467CrossRefPubMedGoogle Scholar
  48. 48.
    Smit AFA, Hubley R, Green P (1996), RepeatMasker Open-3.0Google Scholar
  49. 49.
    Hou Y, Song L, Zhu P et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–885CrossRefPubMedGoogle Scholar
  50. 50.
    Lasken RS (2007) Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol 10:510–516CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Patrick J. Reed
    • 1
  • Meiyan Wang
    • 1
  • Jennifer A. Erwin
    • 1
    • 2
  • Apuã C. M. Paquola
    • 1
    • 2
  • Fred H. Gage
    • 1
    Email author
  1. 1.Salk Institute for Biological StudiesLa JollaUSA
  2. 2.Lieber Institute for Brain DevelopmentBaltimoreUSA

Personalised recommendations