Advertisement

Analysis of LINE-1 Retrotransposition in Neural Progenitor Cells and Neurons

  • Angela Macia
  • Alysson R. MuotriEmail author
Protocol
Part of the Neuromethods book series (NM, volume 131)

Abstract

Long interspersed nuclear element-1 (LINE-1 or L1) is a type of retrotransposon that comprise around 17% of the human genome. Increasing evidence has suggested that L1 activity, termed as L1 retrotransposition, may occur in somatic cells such as neural progenitor cells (NPC) in higher rate than other non-brain tissues. Indeed, L1 retrotransposition has been found to be associated with several types of neurological disorders. Thus, L1 activity may contribute to the mosaicism in brain tissues, suggesting an intriguing, and also important role of L1 in the central nervous system.

Key words

Line-1 Retrotransposition Brain Stem cell NPCs Neurons 

Notes

Acknowledgments

This work was supported by grants from the National Institutes of Health through the NIH R01MH094753. The work was also supported by the California Institute for Regenerative Medicine (CIRM) award DISC1-08825 and a UCSD CTRI pilot grant to Dr. Muotri.

References

  1. 1.
    Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefPubMedGoogle Scholar
  2. 2.
    Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303(5664):1626–1632CrossRefPubMedGoogle Scholar
  3. 3.
    Goodier JL, Kazazian HH (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135(1):23–35CrossRefPubMedGoogle Scholar
  4. 4.
    Munoz-Lopez M, Garcia-Perez JL (2010) DNA transposons: nature and applications in genomics. Curr Genomics 11(2):115–128CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Moran JV, Gilbert N (2002) Mammalian LINE-1 retrotransposons and related elements. In: Craig N et al (eds) Mobile DNA II. ASM Press, Washington, DCGoogle Scholar
  6. 6.
    Mills RE et al (2007) Which transposable elements are active in the human genome? Trends Genet 23(4):183–191CrossRefPubMedGoogle Scholar
  7. 7.
    Venter JC et al (2001) The sequence of the human genome. Science 291(5507):1304–1351CrossRefPubMedGoogle Scholar
  8. 8.
    Scott AF et al (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1(2):113–125CrossRefPubMedGoogle Scholar
  9. 9.
    Dombroski BA et al (1991) Isolation of an active human transposable element. Science 254(5039):1805–1808CrossRefPubMedGoogle Scholar
  10. 10.
    Brouha B et al (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100(9):5280–5285CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sassaman DM et al (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16(1):37–43CrossRefPubMedGoogle Scholar
  12. 12.
    Goodier JL (2014) Retrotransposition in tumors and brains. Mob DNA 5(1):11CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kazazian HH Jr et al (1988) Haemophilia a resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332(6160):164–166CrossRefPubMedGoogle Scholar
  14. 14.
    Ewing AD, Kazazian HH Jr (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 20(9):1262–1270CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Huang CR et al (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141(7):1171–1182CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Swergold GD (1990) Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 10(12):6718–6729CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21(6):1973–1985CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Macia A et al (2011) Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol 31(2):300–316CrossRefPubMedGoogle Scholar
  19. 19.
    Denli AM et al (2015) Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163(3):583–593CrossRefPubMedGoogle Scholar
  20. 20.
    Criscione SW et al (2016) Genome-wide characterization of human L1 antisense promoter-driven transcripts. BMC Genomics 17:463CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hohjoh H, Singer MF (1997) Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J 16(19):6034–6043CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Martin SL, Bushman FD (2001) Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 21(2):467–475CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mathias SL et al (1991) Reverse transcriptase encoded by a human transposable element. Science 254(5039):1808–1810CrossRefPubMedGoogle Scholar
  24. 24.
    Khazina E et al (2011) Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition. Nat Struct Mol Biol 18(9):1006–1014CrossRefPubMedGoogle Scholar
  25. 25.
    Alisch RS et al (2006) Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 20(2):210–224CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Feng Q et al (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916CrossRefPubMedGoogle Scholar
  27. 27.
    Doucet AJ et al (2010) Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 6(10)Google Scholar
  28. 28.
    Hohjoh H, Singer MF (1996) Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 15(3):630–639PubMedPubMedCentralGoogle Scholar
  29. 29.
    Goodier JL et al (2007) LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol Cell Biol 27(18):6469–6483CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Luan DD et al (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72(4):595–605CrossRefPubMedGoogle Scholar
  31. 31.
    Cost GJ et al (2002) Human L1 element target-primed reverse transcription in vitro. EMBO J 21(21):5899–5910CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94(5):1872–1877CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Monot C et al (2013) The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts. PLoS Genet 9(5):e1003499CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Goodier JL (2016) Restricting retrotransposons: a review. Mob DNA 7:16CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Boissinot S, Chevret P, Furano AV (2000) L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 17(6):915–928CrossRefPubMedGoogle Scholar
  36. 36.
    Boissinot S, Furano AV (2001) Adaptive evolution in LINE-1 retrotransposons. Mol Biol Evol 18(12):2186–2194CrossRefPubMedGoogle Scholar
  37. 37.
    Perepelitsa-Belancio V, Deininger P (2003) RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat Genet 35(4):363–366CrossRefPubMedGoogle Scholar
  38. 38.
    Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429(6989):268–274CrossRefPubMedGoogle Scholar
  39. 39.
    Garcia-Perez JL et al (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466(7307):769–773CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538CrossRefPubMedGoogle Scholar
  41. 41.
    Wheelan SJ et al (2005) Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. Genome Res 15(8):1073–1078CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Heras SR et al (2014) Control of mammalian retrotransposons by cellular RNA processing activities. Mobile Genetic Elements 4:e28439CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Macia A, Blanco-Jimenez E, Garcia-Perez JL (2015) Retrotransposons in pluripotent cells: impact and new roles in cellular plasticity. Biochim Biophys Acta 1849(4):417–426CrossRefPubMedGoogle Scholar
  44. 44.
    Ariumi Y (2016) Guardian of the human genome: host defense mechanisms against LINE-1 Retrotransposition. Front Chem 4:28CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Harris RS, Liddament MT (2004) Retroviral restriction by APOBEC proteins. Nat Rev Immunol 4(11):868–877CrossRefPubMedGoogle Scholar
  46. 46.
    Kinomoto M et al (2007) All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition. Nucleic Acids Res 35(9):2955–2964CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chiu YL, Greene WC (2008) The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol 26:317–353CrossRefPubMedGoogle Scholar
  48. 48.
    Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12(9):615–627CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    van den Hurk JA et al (2007) L1 retrotransposition can occur early in human embryonic development. Hum Mol Genet 16(13):1587–1592CrossRefPubMedGoogle Scholar
  50. 50.
    Kano H et al (2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev 23(11):1303–1312CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Garcia-Perez JL et al (2007) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16(13):1569–1577CrossRefPubMedGoogle Scholar
  52. 52.
    Malki S et al (2014) A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell 29(5):521–533CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kitsou C et al (2016) Exogenous retroelement integration in sperm and embryos affects preimplantation development. Reproduction 152(3):185–193CrossRefPubMedGoogle Scholar
  54. 54.
    Wissing S et al (2012) Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. Hum Mol Genet 21(1):208–218CrossRefPubMedGoogle Scholar
  55. 55.
    Klawitter S et al (2016) Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat Commun 7:10286CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Moran JV et al (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87(5):917–927CrossRefPubMedGoogle Scholar
  57. 57.
    Muotri AR et al (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435(7044):903–910CrossRefPubMedGoogle Scholar
  58. 58.
    Hu WF, Chahrour MH, Walsh CA (2014) The diverse genetic landscape of neurodevelopmental disorders. Annu Rev Genomics Hum Genet 15:195–213CrossRefPubMedGoogle Scholar
  59. 59.
    Jamuar SS, Walsh CA (2015) Genomic variants and variations in malformations of cortical development. Pediatr Clin N Am 62(3):571–585CrossRefGoogle Scholar
  60. 60.
    Coufal NG et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460(7259):1127–1131CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Muotri AR, Zhao C, Marchetto MC, Gage FH (2009) Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19(10):1002–1007. doi: 10.1002/hipo.20564 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Abrusan G (2012) Somatic transposition in the brain has the potential to influence the biosynthesis of metabolites involved in Parkinson’s disease and schizophrenia. Biol Direct 7:41CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Maze I et al (2010) Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327(5962):213–216CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hunter RG et al (2012) Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci U S A 109(43):17657–17662CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Liu S et al (2016) Inverse changes in L1 retrotransposons between blood and brain in major depressive disorder. Sci Rep 6:37530CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Belancio VP et al (2010) Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res 38(12):3909–3922CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Macia A et al (2017) Engineered LINE-1 retrotransposition in non-dividing human neurons. Genome Res 27(3):335–348CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sanchez-Luque FJ, Richardson SR, Faulkner GJ (2016) Retrotransposon capture sequencing (RC-Seq): a targeted, high-throughput approach to resolve somatic L1 Retrotransposition in humans. Methods Mol Biol 1400:47–77CrossRefPubMedGoogle Scholar
  69. 69.
    Baillie JK et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479(7374):534–537CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Evrony GD et al (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151(3):483–496CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Upton KR et al (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161(2):228–239CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Erwin JA et al (2016) L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 19(12):1583–1591CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147CrossRefPubMedGoogle Scholar
  74. 74.
    Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340CrossRefPubMedGoogle Scholar
  75. 75.
    Kuwabara T et al (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12(9):1097–1105CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Muotri AR et al (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468(7322):443–446CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Shpyleva S et al (2017) Overexpression of LINE-1 retrotransposons in autism brain. Mol Neurobiol. doi: 10.1007/s12035-017-0421-x
  78. 78.
    Coufal NG et al (2011) Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci U S A 108(51):20382–20387CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Bundo M et al (2014) Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81(2):306–313CrossRefPubMedGoogle Scholar
  80. 80.
    Zhao K et al (2013) Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi-Goutieres syndrome-related SAMHD1. Cell Rep 4(6):1108–1115CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Stetson DB et al (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134(4):587–598CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Burdette DL, Vance RE (2013) STING and the innate immune response to nucleic acids in the cytosol. Nat Immunol 14(1):19–26CrossRefPubMedGoogle Scholar
  83. 83.
    Woo SR et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41(5):830–842CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24(1):93–103CrossRefPubMedGoogle Scholar
  85. 85.
    Volkman HE, Stetson DB (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15(5):415–422CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Fowler BJ et al (2014) Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science 346(6212):1000–1003CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Wei W et al (2001) Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21(4):1429–1439CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Gilbert N, Lutz-Prigge S, Moran JV (2002) Genomic deletions created upon LINE-1 retrotransposition. Cell 110(3):315–325CrossRefPubMedGoogle Scholar
  89. 89.
    Symer DE et al (2002) Human l1 retrotransposition is associated with genetic instability in vivo. Cell 110(3):327–338CrossRefPubMedGoogle Scholar
  90. 90.
    Wagstaff BJ et al (2012) Rescuing Alu: recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion. PLoS Genet 8(8):e1002842CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Cano D et al (2016) Characterization of engineered L1 Retrotransposition events: the recovery method. Methods Mol Biol 1400:165–182CrossRefPubMedGoogle Scholar
  92. 92.
    Ostertag EM et al (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28(6):1418–1423CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Brouha B et al (2002) Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am J Hum Genet 71(2):327–336CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Kimberland ML et al (1999) Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 8(8):1557–1560Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of PediatricsRady Children’s Hospital San Diego, University of California San DiegoLa JollaUSA

Personalised recommendations