Skip to main content

Fluorescent Labeling of Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1665))

Abstract

Many single-molecule experimental techniques exploit fluorescence as a tool to investigate conformational dynamics, molecular interactions, or track the movement of proteins in order to gain insight into their biological functions. A prerequisite to these experimental approaches is to graft one or more fluorophores on the protein of interest with the desired photophysical properties. Here, we describe procedures for efficient methods used to covalently attach fluorophores to proteins. Alternative direct and indirect labeling strategies are also described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, Shu X, Zhang J, Tsien RY (2016) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42:111–129. doi:10.1016/j.tibs.2016.09.010

    Article  PubMed  Google Scholar 

  2. Bugreev DV, Huang F, Mazina OM, Pezza RJ, Voloshin ON, Daniel Camerini-Otero R, Mazin A V (2014) HOP2-MND1 modulates RAD51 binding to nucleotides and DNA. Nat Commun 5:4198. doi:10.1038/ncomms5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Candelli A, Holthausen JT, Depken M, Brouwer I, Mariëlla M, Maman J, Pellegrini L, Bernard S, Garcin E, Wyman C, Wuite GJL, Peterman EJG (2014) Visualization and quantification of RAD51 filament formation at single-monomer resolution. Proc Natl Acad Sci U S A 111:15090–15095. doi:10.1073/pnas.1307824111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang J, Gong Z, Ghosal G, Chen J (2009) SOSS complexes participate in the maintenance of genomic stability. Mol Cell 35:384–393. doi:10.1016/j.molcel.2009.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Galletto R, Amitani I, Baskin RJ, Kowalczykowski SC (2006) Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 443:875–878. doi:10.1038/nature05197

    Article  CAS  PubMed  Google Scholar 

  6. Henricksen LA, Umbricht CB, Wold MS (1994) Recombinant replication protein A: expression, complex formation, and functional characterization. J Biol Chem 269:11121–11132

    CAS  PubMed  Google Scholar 

  7. Ma CJ, Gibb B, Kwon Y, Sung P, Greene EC (2017) Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Res 45:749–761. doi:10.1093/nar/gkw1125

    Article  PubMed  Google Scholar 

  8. Popp MW-L, Ploegh HL (2011) Making and breaking peptide bonds: protein engineering using sortase. Angew Chem Int Ed Engl 50:5024–5032. doi:10.1002/anie.201008267

    Article  CAS  PubMed  Google Scholar 

  9. Theile CS, Witte MD, Blom AE, Kundrat L, Ploegh HL, Guimaraes CP (2013) Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat Protoc 8:1800–1807. doi:10.1038/nprot.2013.102

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guimaraes CP, Witte MD, Theile CS, Bozkurt G, Kundrat L, Blom AEM, Ploegh HL (2013) Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat Protoc 8:1787–1799. doi:10.1038/nprot.2013.101

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by LASERLAB-EUROPE (grant agreement no 284464, EC’s Seventh Framework Programme), the ARC Foundation for Cancer Research and the French National Cancer Institute. We thank Sabrina Lignon, Marielle Bauzan, and Yann Denis of the Institut de Microbiologie de la Méditerranée technical platforms for advice and help with instrumentation and services. We thank Marc Wold (University of Iowa) for the gift of the p11d-tRPA polycistronic expression construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Modesti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Modesti, M. (2018). Fluorescent Labeling of Proteins. In: Peterman, E. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 1665. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7271-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7271-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7270-8

  • Online ISBN: 978-1-4939-7271-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics