Skip to main content

A Brief Introduction to Single-Molecule Fluorescence Methods

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1665))

Abstract

One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Stokes GG (1852) On the change of refrangibility of light. Philos Trans R Soc Lond 142:463–562

    Article  Google Scholar 

  2. Herschel JFW (1845) On a case of superficial colour presented by a homogeneous liquid internally colourless. Philos Trans R Soc Lond 135:143–145

    Article  Google Scholar 

  3. Herschel JFW (1845) On the epipolic dispersion of light, being a supplement to a paper entitled, “on a case of superficial colour presented by a homogeneous liquid internally colourless”. Philos Trans R Soc Lond 135:147–153

    Article  Google Scholar 

  4. Brewster D (1846) On the decomposition and dispersion of light within solid and fluid bodies. Trans R Soc Edinb 16(3):11

    Google Scholar 

  5. Lakowicz JR (2006) Principles of fluorescence microscopy, 3rd edn. Springer, New York, NY

    Book  Google Scholar 

  6. Hirschfeld T (1976) Optical microscopic observation of single small molecules. J Opt Soc Am 66(10):1124–1124

    Google Scholar 

  7. Nguyen DC, Keller RA, Jett JH, Martin JC (1987) Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence. Anal Chem 59(17):2158–2161

    Article  CAS  PubMed  Google Scholar 

  8. Peck K, Stryer L, Glazer AN, Mathies RA (1989) Single-molecule fluorescence detection – auto-correlation criterion and experimental realization with phycoerythrin. Proc Natl Acad Sci U S A 86(11):4087–4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moerner WE, Kador L (1989) Finding a single molecule in a haystack - optical-detection and spectroscopy of single absorbers in solids. Anal Chem 61(21):A1217–A1223

    Google Scholar 

  10. Orrit M, Bernard J (1990) Single pentacene molecules detected by fluorescence excitation in a para-terphenyl crystal. Phys Rev Lett 65(21):2716–2719

    Article  CAS  PubMed  Google Scholar 

  11. Shera EB, Seitzinger NK, Davis LM, Keller RA, Soper SA (1990) Detection of single fluorescent molecules. Chem Phys Lett 174(6):553–557

    Article  CAS  Google Scholar 

  12. Moerner WE, Shechtman Y, Wang Q (2015) Single-molecule spectroscopy and imaging over the decades. Faraday Discuss 184:9–36. doi:10.1039/c5fd00149h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tinnefeld P, Sauer M (2005) Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. Angew Chem Int Ed 44(18):2642–2671

    Article  CAS  Google Scholar 

  14. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683

    Article  CAS  PubMed  Google Scholar 

  15. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74(8):3597–3619. doi:10.1063/1.1589587

    Article  CAS  Google Scholar 

  16. Soper SA, Nutter HL, Keller RA, Davis LM, Shera EB (1993) The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy. Photochem Photobiol 57(6):972–977

    Article  CAS  Google Scholar 

  17. Wieser S, Schutz GJ (2008) Tracking single molecules in the live cell plasma membrane-do’s and don’t’s. Methods 46(2):131–140

    Article  CAS  PubMed  Google Scholar 

  18. Kubitscheck U (2013) Fluorescence microscopy: from principles to biological applications. Weinheim, Wiley-Blackwell

    Book  Google Scholar 

  19. Kapanidis AN, Weiss S (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J Chem Phys 117(24):10953–10964. doi:10.1063/1.1521158

    Article  CAS  Google Scholar 

  20. Peterman EJG, Brasselet S, Moerner WE (1999) The fluorescence dynamics of single molecules of green fluorescent protein. J Phys Chem A 103(49):10553–10560. doi:10.1021/jp991968o

    Article  CAS  Google Scholar 

  21. Kuno M, Fromm DP, Hamann HF, Gallagher A, Nesbitt DJ (2000) Nonexponential “blinking” kinetics of single CdSe quantum dots: a universal power law behavior. J Chem Phys 112(7):3117–3120. doi:10.1063/1.480896

    Article  CAS  Google Scholar 

  22. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76

    Article  CAS  PubMed  Google Scholar 

  23. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    Article  CAS  PubMed  Google Scholar 

  24. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  CAS  Google Scholar 

  25. Kaji N, Tokeshi M, Baba Y (2007) Single-molecule measurements with a single quantum dot. Chem Rec 7(5):295–304

    Article  CAS  PubMed  Google Scholar 

  26. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52

    Article  CAS  PubMed  Google Scholar 

  27. Gao XH, Yang LL, Petros JA, Marshal FF, Simons JW, Nie SM (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16(1):63–72

    Article  CAS  PubMed  Google Scholar 

  28. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, AM W, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene-expression. Science 263(5148):802–805

    Article  CAS  PubMed  Google Scholar 

  30. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Review – the fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224

    Article  CAS  PubMed  Google Scholar 

  31. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909. doi:10.1038/Nmeth819

    Article  CAS  PubMed  Google Scholar 

  32. Wu B, Piatkevich KD, Lionnet T, Singer RH, Verkhusha VV (2011) Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr Opin Cell Biol 23(3):310–317. doi:10.1016/j.ceb.2010.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877. doi:10.1126/science.1074952

    Article  CAS  PubMed  Google Scholar 

  34. HP L, Xun LY, Xie XS (1998) Single-molecule enzymatic dynamics. Science 282(5395):1877–1882. doi:10.1126/science.282.5395.1877

    Article  Google Scholar 

  35. Rutkauskas D, Novoderezhkin V, Cogdell RJ, van Grondelle R (2005) Fluorescence spectroscopy of conformational changes of single LH2 complexes. Biophys J 88(1):422–435. doi:10.1529/biophysj.104.048629

    Article  CAS  PubMed  Google Scholar 

  36. Murphy DB (2001) Fundamentals of light microscopy and electronic imaging. Wiley-Liss, Inc., New York, NY

    Google Scholar 

  37. Michalet X, Siegmund OHW, Vallerga JV, Jelinsky P, Millaud JE, Weiss S (2007) Detectors for single-molecule fluorescence imaging and spectroscopy. J Mod Opt 54(2–3):239–281. doi:10.1080/09500340600769067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. 2. Experimental realization. Biopolymers 13(1):29–61

    Article  CAS  PubMed  Google Scholar 

  39. Eigen M, Rigler R (1994) Sorting single molecules – application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A 91(13):5740–5747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Verbrugge S, Kapitein LC, Peterman EJG (2007) Kinesin moving through the spotlight: single-motor fluorescence microscopy with submillisecond time resolution. Biophys J 92(7):2536–2545. doi:10.1529/biophysj.106.093575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson CM, Georgiou GN, Morrison IEG, Stevenson GVW, Cherry RJ (1992) Tracking of cell-surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera – low-density-lipoprotein and influenza-virus receptor mobility at 4-degrees-C. J Cell Sci 101:415–425

    PubMed  Google Scholar 

  42. Hecht E (1998) Optics, 3rd edn. Addison-Wesley, Boston, MA

    Google Scholar 

  43. Dickson RM, Norris DJ, Tzeng YL, Moerner WE (1996) Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. Science 274(5289):966–969

    Article  CAS  PubMed  Google Scholar 

  44. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2(11):764–774. doi:10.1034/j.1600-0854.2001.21104.x

    Article  CAS  PubMed  Google Scholar 

  45. Verveer PJ, Swoger J, Pampaloni F, Greger K, Marcello M, Stelzer EH (2007) High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat Methods 4(4):311–313. doi:10.1038/nmeth1017

    CAS  PubMed  Google Scholar 

  46. Pitrone PG, Schindelin J, Stuyvenberg L, Preibisch S, Weber M, Eliceiri KW, Huisken J, Tomancak P (2013) OpenSPIM: an open-access light-sheet microscopy platform. Nat Methods 10(7):598–599. doi:10.1038/nmeth.2507

    Article  CAS  PubMed  Google Scholar 

  47. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009. doi:10.1126/science.1100035

    Article  CAS  PubMed  Google Scholar 

  48. Ritter JG, Veith R, Veenendaal A, Siebrasse JP, Kubitscheck U (2010) Light sheet microscopy for single molecule tracking in living tissue. PLoS One 5(7):e11639. doi:10.1371/journal.pone.0011639

    Article  PubMed  PubMed Central  Google Scholar 

  49. Galland R, Grenci G, Aravind A, Viasnoff V, Studer V, Sibarita JB (2015) 3D high- and super-resolution imaging using single-objective SPIM. Nat Methods 12(7):641–644. doi:10.1038/nmeth.3402

    Article  CAS  PubMed  Google Scholar 

  50. Meddens MB, Liu S, Finnegan PS, Edwards TL, James CD, Lidke KA (2016) Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution. Biomed Opt Express 7(6):2219–2236. doi:10.1364/BOE.7.002219

    Article  PubMed  PubMed Central  Google Scholar 

  51. Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, Chen S, Berry RM, Palmer T, Berks BC (2008) Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc Natl Acad Sci U S A 105(40):15376–15381. doi:10.1073/pnas.0806338105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kapitein LC, Janson ME, van den Wildenberg S, Hoogenraad CC, Schmidt CF, Peterman EJG (2008) Microtubule-driven multimerization recruits ase1p onto overlapping microtubules. Curr Biol 18(21):1713–1717. doi:10.1016/j.cub.2008.09.046

    Article  CAS  PubMed  Google Scholar 

  53. van Mameren J, Modesti M, Kanaar R, Wyman C, Peterman EJG, Wuite GJL (2009) Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature 457(7230):745–748. doi:10.1038/nature07581

    Article  PubMed  Google Scholar 

  54. Schmidt T, Schutz GJ, Baumgartner W, Gruber HJ, Schindler H (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci U S A 93(7):2926–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yildiz A, Selvin PR (2005) Fluorescence imaging with one manometer accuracy: application to molecular motors. Acc Chem Res 38(7):574–582. doi:10.1021/ar040136s

    Article  CAS  PubMed  Google Scholar 

  57. Saxton MJ (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys J 72(4):1744–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gross D, Webb WW (1986) Molecular counting of low-density-lipoprotein particles as individuals and small clusters on cell-surfaces. Biophys J 49(4):901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kwok BH, Kapitein LC, Kim JH, Peterman EJG, Schmidt CF, Kapoor TM (2006) Allosteric inhibition of kinesin-5 modulates its processive directional motility. Nat Chem Biol 2(9):480–485. doi:10.1038/nchembio812

    Article  CAS  PubMed  Google Scholar 

  60. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi:10.1126/science.1127344

    Article  CAS  PubMed  Google Scholar 

  61. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi:10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176. doi:10.1002/anie.200802376

    Article  CAS  Google Scholar 

  63. Lacoste TD, Michalet X, Pinaud F, Chemla DS, Alivisatos AP, Weiss S (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci U S A 97(17):9461–9466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Agrawal A, Deo R, Wang GD, Wang MD, Nie SM (2008) Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes. Proc Natl Acad Sci U S A 105(9):3298–3303. doi:10.1073/pnas.0712351105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Churchman LS, Okten Z, Rock RS, Dawson JF, Spudich JA (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci U S A 102(5):1419–1423. doi:10.1073/pnas.0409487102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhuang XW, Bartley LE, Babcock HP, Russell R, Ha TJ, Herschlag D, Chu S (2000) A single-molecule study of RNA catalysis and folding. Science 288(5473):2048. doi:10.1126/science.288.5473.2048

    Article  CAS  PubMed  Google Scholar 

  67. Mori T, Vale RD, Tomishige M (2007) Conformation of kinesin dimer at ATP-waiting state probed by single molecule FRET. Biophys J 2007:498

    Google Scholar 

  68. Prevo B, Peterman EJ (2014) Forster resonance energy transfer and kinesin motor proteins. Chem Soc Rev 43(4):1144–1155. doi:10.1039/c3cs60292c

    Article  CAS  PubMed  Google Scholar 

  69. Corrie JET, Craik JS, Munasinghe VRN (1998) A homobifunctional rhodamine for labeling proteins with defined orientations of a fluorophore. Bioconjug Chem 9(2):160–167. doi:10.1021/bc970174e

    Article  CAS  PubMed  Google Scholar 

  70. Asenjo AB, Sosa H (2009) A mobile kinesin-head intermediate during the ATP-waiting state. Proc Natl Acad Sci U S A 106(14):5657–5662. doi:10.1073/pnas.0808355106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rosenow MA, Huffman HA, Phail ME, Wachter RM (2004) The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry 43(15):4464–4472. doi:10.1021/bi0361315

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin J. G. Peterman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

van den Wildenberg, S.M.J.L., Prevo, B., Peterman, E.J.G. (2018). A Brief Introduction to Single-Molecule Fluorescence Methods. In: Peterman, E. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 1665. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7271-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7271-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7270-8

  • Online ISBN: 978-1-4939-7271-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics