Skip to main content

Tethered Particle Motion: An Easy Technique for Probing DNA Topology and Interactions with Transcription Factors

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1665))

Abstract

Tethered Particle Motion (TPM) is a versatile in vitro technique for monitoring the conformations a linear macromolecule, such as DNA, can exhibit. The technique involves monitoring the diffusive motion of a particle anchored to a fixed point via the macromolecule of interest, which acts as a tether. In this chapter, we provide an overview of TPM, review the fundamental principles that determine the accuracy with which effective tether lengths can be used to distinguish different tether conformations, present software tools that assist in capturing and analyzing TPM data, and provide a protocol which uses TPM to characterize lac repressor-induced DNA looping. Critical to any TPM assay is the understanding of the timescale over which the diffusive motion of the particle must be observed to accurately distinguish tether conformations. Approximating the tether as a Hookean spring, we show how to estimate the diffusion timescale and discuss how it relates to the confidence with which tether conformations can be distinguished. Applying those estimates to a lac repressor titration assay, we describe how to perform a TPM experiment. We also provide graphically driven software which can be used to speed up data collection and analysis. Lastly, we detail how TPM data from the titration assay can be used to calculate relevant molecular descriptors such as the J factor for DNA looping and lac repressor–operator dissociation constants. While the included protocol is geared toward studying DNA looping, the technique, fundamental principles, and analytical methods are more general and can be adapted to a wide variety of molecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 331:450–453. doi:10.1038/331450a0

    Article  CAS  PubMed  Google Scholar 

  2. Schafer DA, Gelles J, Sheetz MP, Landick R (1991) Transcription by single molecules of RNA polymerase observed by light microscopy. Nature 352:444–448. doi:10.1038/352444a0

    Article  CAS  PubMed  Google Scholar 

  3. Ucuncuoglu S, Engel KL, Purohit PK et al (2016) Direct characterization of transcription elongation by RNA polymerase I. PLoS One 11:e0159527. doi:10.1371/journal.pone.0159527

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vanzi F, Vladimirov S, Knudsen CR et al (2003) Protein synthesis by single ribosomes. RNA 9:1174–1179. doi:10.1261/rna.5800303.these

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao N, Shearwin K, Mack J et al (2013) Purification of bacteriophage lambda repressor. Protein Expr Purif 91:30–36. doi:10.1016/j.pep.2013.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang H, Dodd IB, Dunlap DD et al (2013) Single molecule analysis of DNA wrapping and looping by a circular 14mer wheel of the bacteriophage 186 CI repressor. Nucleic Acids Res 41:5746–5756. doi:10.1093/nar/gkt298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Priest DG, Kumar S, Yan Y et al (2014) Quantitation of interactions between two DNA loops demonstrates loop domain insulation in E. coli cells. Proc Natl Acad Sci U S A 111:E4449–E4457. doi:10.1073/pnas.1410764111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laurens N, Bellamy SRW, Harms AF et al (2009) Dissecting protein-induced DNA looping dynamics in real time. Nucleic Acids Res 37:5454–5464. doi:10.1093/nar/gkp570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laurens N, Rusling DA, Pernstich C et al (2012) DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics. Nucleic Acids Res 40:4988–4997. doi:10.1093/nar/gks184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nir G, Lindner M, Dietrich HRC et al (2011) HU protein induces incoherent DNA persistence length. Biophys J 100:784–790. doi:10.1016/j.bpj.2010.12.3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pouget N, Turlan C, Destainville N et al (2006) IS911 transpososome assembly as analysed by tethered particle motion. Nucleic Acids Res 34:4313–4323. doi:10.1093/nar/gkl420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zurla C, Manzo C, Dunlap D et al (2009) Direct demonstration and quantification of long-range DNA looping by the λ bacteriophage repressor. Nucleic Acids Res 37:2789–2795. doi:10.1093/nar/gkp134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson S, Lindén M, Phillips R (2012) Sequence dependence of transcription factor-mediated DNA looping. Nucleic Acids Res 40:7728–7738. doi:10.1093/nar/gks473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan HF (2012) Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated site-specific recombination. Nucleic Acids Res 40:6208–6222. doi:10.1093/nar/gks274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simons A, Tils D, von Wilcken-Bergmann B et al (1984) Possible ideal lac operator: Escherichia coli lac operator-like sequences from eukaryotic genomes lack the central G X C pair. Proc Natl Acad Sci U S A 81:1624–1628. doi:10.1073/pnas.81.6.1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frank DE, Saecker RM, Bond JP et al (1997) Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. J Mol Biol 267:1186–1206. doi:10.1006/jmbi.1997.0920

    Article  CAS  PubMed  Google Scholar 

  17. Jeong J, Le TT, Kim HD (2016) Single-molecule fluorescence studies on DNA looping. Methods 105:34–43. doi:10.1016/j.ymeth.2016.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phillips R, Kondev J, Theriot J (2009) Beam theory: architecture for cells and skeletons. In: Morales M (ed) Physical biology of science. Garland Science, Taylor and Francis Group, LLC, New York, NY, pp 371–373

    Google Scholar 

  19. Han L, Garcia HG, Blumberg S et al (2009) Concentration and length dependence of DNA looping in transcriptional regulation. PLoS One 4(5):e5621. doi:10.1371/journal.pone.0005621

    Article  PubMed  PubMed Central  Google Scholar 

  20. Towles KB, Beausang JF, Garcia HG et al (2009) First-principles calculation of DNA looping in tethered particle experiments. Phys Biol 6:25001. doi:10.1016/j.bpj.2008.12.3653

    Article  Google Scholar 

  21. Priest DG, Cui L, Kumar S et al (2014) Quantitation of the DNA tethering effect in long-range DNA looping in vivo and in vitro using the Lac and λ repressors. Proc Natl Acad Sci U S A 111:349–354. doi:10.1073/pnas.1317817111

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Manzo C, Zurla C et al (2014) Enhanced tethered-particle motion analysis reveals viscous effects. Biophys J 106:399–409. doi:10.1016/j.bpj.2013.11.4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Segall DE, Nelson PC, Phillips R (2006) Volume-exclusion effects in tethered-particle experiments: Bead size matters. Phys Rev Lett 96:1–4. doi:10.1103/PhysRevLett.96.088306

    Article  Google Scholar 

  24. Nelson PC, Zurla C, Brogioli D et al (2006) Tethered particle motion as a diagnostic of DNA tether length. J Phys Chem B 110:17260–17267. doi:10.1021/jp0630673

    Article  CAS  PubMed  Google Scholar 

  25. Pouget N, Dennis C, Turlan C et al (2004) Single-particle tracking for DNA tether length monitoring. Nucleic Acids Res 32:e73. doi:10.1093/nar/gnh073

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dietrich HRC, Rieger B, Wiertz FGM et al (2009) Tethered particle motion mediated by scattering from gold nanoparticles and darkfield microscopy. J Nanophoton 3:31795. doi:10.1117/1.3174445

    Article  Google Scholar 

  27. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770. doi:10.1021/ma00130a008

    Article  CAS  Google Scholar 

  28. Rubinstein M, Colby R (2003) Polymer physics. Oxford University Press, New York, NY

    Google Scholar 

  29. Brinkers S, Dietrich HRC, De Groote FH et al (2009) The persistence length of double stranded DNA determined using dark field tethered particle motion. J Chem Phys 130(21):215105. doi:10.1063/1.3142699

    Article  PubMed  Google Scholar 

  30. Lindner M, Nir G, Vivante A et al (2013) Dynamic analysis of a diffusing particle in a trapping potential. Phys Rev E 87:1–5. doi:10.1103/PhysRevE.87.022716

    Article  Google Scholar 

  31. Beausang JF, Nelson PC (2007) Diffusive hidden Markov model characterization of DNA looping dynamics in tethered particle experiments. Phys Biol 4:205–219. doi:10.1088/1478-3975/4/3/007

    Article  CAS  PubMed  Google Scholar 

  32. Bevan MA, Prieve DC (2000) Hindered diffusion of colloidal particles very near to a wall: revisited. J Chem Phys 113:1228–1236. doi:10.1063/1.481900

    Article  CAS  Google Scholar 

  33. Parthasarathy R (2012) Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat Methods 9:724–726. doi:10.1038/nmeth.2071

    Article  CAS  PubMed  Google Scholar 

  34. Han L, Lui BH, Blumberg S et al (2009) Calibration of tethered particle motion experiments. In: Benham CJ, Harvey S, Olson WK et al (eds) Mathematics of DNA structure, function and interactions. Springer, New York, NY, pp 123–138

    Chapter  Google Scholar 

  35. Johnson S, van de Meent J-W, Phillips R et al (2014) Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion. Nucleic Acids Res 42:10265–10277. doi:10.1093/nar/gku563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. NEB (2015) PCR reagents. https://www.neb.com/~/media/NebUs/Files/Brochures/PCR_Brochure.pdf. Accessed 14 Nov 2016

Download references

Acknowledgements

We would like to thank Kathleen Matthews for graciously providing us with the lac repressor used in this work. We also acknowledge former Finzi Lab members Chiara Zurla, Carlo Manzo, Suleyman Ucuncuoglu, and Sandip Kumar who forged earlier versions of our TPM protocols. This work was supported by the NIH, Grant: R01 GM084070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dunlap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kovari, D.T., Yan, Y., Finzi, L., Dunlap, D. (2018). Tethered Particle Motion: An Easy Technique for Probing DNA Topology and Interactions with Transcription Factors. In: Peterman, E. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 1665. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7271-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7271-5_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7270-8

  • Online ISBN: 978-1-4939-7271-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics