Skip to main content

Atomic Force Microscopy: An Introduction

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1665))

Abstract

Imaging of nano-sized particles and sample features is crucial in a variety of research fields. For instance in biological sciences, where it is paramount to investigate structures at the single particle level. Often two-dimensional images are not sufficient and further information such as topography and mechanical properties are required. Furthermore, to increase the biological relevance, it is desired to perform the imaging in close to physiological environments. Atomic force microscopy (AFM) meets these demands in an all-in-one instrument. It provides high-resolution images including surface height information leading to three-dimensional information on sample morphology. AFM can be operated both in air and in buffer solutions. Moreover, it has the capacity to determine protein and membrane material properties via the force spectroscopy mode. Here we discuss the principles of AFM operation and provide examples of how biomolecules can be studied. By including new approaches such as high-speed AFM (HS-AFM) we show how AFM can be used to study a variety of static and dynamic single biomolecules and biomolecular assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demtröder W (ed) (2010) Experimentalphysik 3, Kern-, Teilchen- und Astrophysik, 4th edn. Springer, Berlin

    Google Scholar 

  2. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61

    Article  Google Scholar 

  3. Binnig G, Quate CF (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  CAS  PubMed  Google Scholar 

  4. de Pablo PJ (2011) Introduction to atomic force microscopy. Meth Mol Biol 783:197–212

    Article  Google Scholar 

  5. Eaton P, West P (eds) (2010) Atomic force microscopy. Oxford Univesity Press, Oxford

    Google Scholar 

  6. Kodera N, Ando T (2014) The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 6:237–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Santos NC, Castanho MARB (2004) An overview of the biophysical applications of atomic force microscopy. Biophys Chem 107:133–149

    Article  CAS  PubMed  Google Scholar 

  8. Baclayon M, Wuite GJL, Roos WH (2010) Imaging and manipulation of single viruses by atomic force microscopy. Soft Matter 6:5273–5285

    Article  CAS  Google Scholar 

  9. Marchetti M, Wuite GJL, Roos WH (2016) Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr Opin Virol 18:82–88

    Article  CAS  PubMed  Google Scholar 

  10. Morris VJ, Kirby AR, Gunning AP (eds) (2009) Atomic force microscopy for biologists, 2nd edn. London, Imperial College Press

    Google Scholar 

  11. Gross R, Marx A (eds) (2012) Festkörperphysik, 1st edn. München, Oldenbourg Verlag

    Google Scholar 

  12. Ando T (2012) High-speed atomic force microscopy coming of age. Nanotechnology 23:062001

    Article  PubMed  Google Scholar 

  13. Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog Surf Sci 83:337–437

    Article  CAS  Google Scholar 

  14. Ando T, Uchihashi T, Kodera N et al. (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflügers Arch Eur J Physiol 456:211–225

    Google Scholar 

  15. Eghiaian F, Rico F, Colom A et al. (2014) High-speed atomic force microscopy: Imaging and force spectroscopy. FEBS Lett 588:3631–3638

    Google Scholar 

  16. Rugar D, Hansma P (1990) Atomic force microscopy. Phys Today 43:23–30

    Article  CAS  Google Scholar 

  17. Roos WH, Radtke K, Kniesmeijer E et al. (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci USA 106:9673–9678

    Google Scholar 

  18. Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53:1045

    Article  Google Scholar 

  19. Churnside AB, Sullan RMA, Nguyen DM et al. (2012) Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy. Nano Lett 12:3557–3561

    Google Scholar 

  20. Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967–3969

    Article  CAS  Google Scholar 

  21. Vorselen D, Kooreman ES, Wuite GJL, Roos WH (2016) Controlled tip wear on high roughness surfaces yields gradual broadening and rounding of cantilever tips. Sci Rep 6:36972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hölscher H, Allers W, Schwarz UD et al. (2000) Interpretation of “true atomic resolution” images of graphite (0001) in noncontact atomic force microscopy. Phys Rev B 62:6967

    Google Scholar 

  23. Ho H, West P (1996) Optimizing AC-mode atomic force microscope imaging. J. Scan Microsc 18:339–343

    CAS  Google Scholar 

  24. García R, Pérez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197–301

    Article  Google Scholar 

  25. de Pablo PJ, Colchero J, Gómez-Herrero J, Baró AM (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73:3300

    Article  Google Scholar 

  26. Moreno-Herrero F, Colchero J, Gómez-Herrero J, Baro AM (2004) Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids. Phys Rev E 69:1–9

    Article  Google Scholar 

  27. JPK Instruments (2011) Nanowizard 4 – the next benchmark for BioAFM. JPK Instruments, Berlin

    Google Scholar 

  28. Bruker Nano Surfaces Division (2015) PeakForce tapping – how AFM should be. Bruker Nano Surfaces Division, Goleta, CA

    Google Scholar 

  29. Engel A, Müller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 7:715–718

    Article  CAS  PubMed  Google Scholar 

  30. Bustamante C, Rivetti C (1996) Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu Rev Biophys Biomol Struct 25:395–429

    Article  CAS  PubMed  Google Scholar 

  31. Farge G, Mehmedovic M, Baclayon M et al. (2014) In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription. Cell Rep 8:66–74

    Google Scholar 

  32. Sanchez H, Kanaar R, Wyman C (2010) Molecular recognition of DNA–protein complexes: a straightforward method combining scanning force and fluorescence microscopy. Ultramicroscopy 110:844–851

    Article  CAS  PubMed  Google Scholar 

  33. Falvo MR, Washburn S, Superfine R et al. (1997) Manipulation of individual viruses: friction and mechanical properties. Biophys J 72:1396–1403

    Google Scholar 

  34. van der Heijden T, Moreno-Herrero F, Kanaar R et al. (2007) Comment on “Direct and Real-Time Visualization of the Disassembly of Single RecA-DNA-ATP(gamma)S Complex” using AFM imaging in fluid. Nano Lett 6:3000–3002

    Google Scholar 

  35. Ando T, Kodera N, Takai E et al. (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98:12468–12472

    Google Scholar 

  36. Uchihashi T, Watanabe H, Fukuda S et al. (2016) Functional extension of high-speed AFM for wider biological applications. Ultramicroscopy 160:182–196

    Google Scholar 

  37. Kodera N, Yamamoto D, Ishikawa R, Ando T (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468:72–76

    Article  CAS  PubMed  Google Scholar 

  38. Nievergelt AP, Erickson BW, Hosseini N et al. (2015) Studying biological membranes with extended range high-speed atomic force microscopy. Sci Rep 5:11987

    Google Scholar 

  39. Henderson E (1992) Imaging and nano dissection of individual supercoiledplasmids by atomic force microscopy. Nucleic Acids Res 20:445–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baclayon M, Roos WH, Wuite GJL (2010) Sampling protein form and function with the atomic force microscope. Mol Cell Proteomics 9:1678–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lekka M (2016) Discrimination between normal and cancerous cells using AFM. Bionanoscience 6:65–80

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lamolle SF, Monjo M, Lyngstadaas SP et al. (2009) Titanium implant surface modification by cathodic reduction in hydrofluoric acid: Surface characterization and in vivo performance. J Biomed Mater Res A 88:581–588

    Google Scholar 

  43. Larsson Wexell C, Thomsen P, AronssonB-O et al. (2013) Bone response tosurface-modifiedtitanium implants: studies on the early tissue response to implants with different surface characteristics. Int J Biomater 2013:1–10

    Google Scholar 

  44. Kroeze RJ, Helder MN, Roos WH et al. (2010) The effect of ethylene oxide, glow discharge and electron beam on the surface characteristics of poly(L-lactide-co-caprolactone) and the corresponding cellular response of adipose stem cells. Acta Biomater 6:2060–2065

    Google Scholar 

  45. de Pablo PJ, Colchero J,Gomez-HerreroJ et al. (1999) Adhesion maps using scanning force microscopy techniques. J Adhes 71:339–356

    Google Scholar 

  46. Mitsui K, Hara M, Ikai A (1996) Mechanical unfolding of α2-macroglobulinatomic force microscope. FEBS Lett 385:29–33

    Google Scholar 

  47. Rief M, Gautel M, Oesterhelt F et al. (1997) Reversible unfolging of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Google Scholar 

  48. Hinterdorfer P, Dufrêne YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  CAS  PubMed  Google Scholar 

  49. Kasas S, Thomson NH, Smith BL et al. (1997) Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36:461–468

    Google Scholar 

  50. Kasas S, Dietler G (2008) Probing nanomechanical properties from biomolecules to living cells. Pflügers Arch Eur J Physiol 456:13–27

    Article  CAS  Google Scholar 

  51. Baclayon M, van Ulsen P, Mouhib H et al. (2016) Mechanical unfolding of an autotransporter passenger protein reveals the secretion starting point and processive transport intermediates. ACS Nano 10:5710–5719

    Google Scholar 

  52. Alsteens D, Newton R, Schubert R et al. (2016) Nanomechanical mapping of first binding steps of a virus to animal cells. Nat Nanotechnol 12(2):177–183. doi: 10.1038/nnano.2016.228

  53. Maity S, Mazzolini M, Arcangeletti M et al. (2015) Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed bysingle-moleculeforce spectroscopy. Nat Commun 6:7093

    Google Scholar 

  54. van Rosmalen MGM, Roos WH, Wuite GJL (2015) Material properties of viral nanocages explored by atomic force microscopy. Meth Mol Biol 1252:115–137

    Article  Google Scholar 

  55. Roos WH, Wuite GJL (2009) Nanoindentation studies reveal material properties of viruses. Adv Mater 21:1187–1192

    Article  CAS  Google Scholar 

  56. Mateu MG (2012) Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective. Virus Res 168:1–22

    Article  CAS  PubMed  Google Scholar 

  57. Roos WH, Gertsman I, May ER et al. (2012) Mechanics of bacteriophage maturation. Proc Natl Acad Sci U S A 109:2342–2347

    Google Scholar 

  58. Carrasco C, Luque A, Hernando-Pérez M et al. (2011)Built-inmechanical stress in viral shells. Biophys J 100:1100–1108

    Google Scholar 

  59. Baclayon M, Shoemaker GK, Uetrecht C et al. (2011) Prestress strengthens the shell of Norwalk virus nanoparticles. Nano Lett 11:4865–4869

    Google Scholar 

Download references

Acknowledgement

This work is supported by the STW Perspectief grant CANCER-ID and a Nederlandse Organisatie der Wetenschappen Vidi vernieuwingsimpuls grant (both to WHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter H. Roos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Piontek, M.C., Roos, W.H. (2018). Atomic Force Microscopy: An Introduction. In: Peterman, E. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 1665. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7271-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7271-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7270-8

  • Online ISBN: 978-1-4939-7271-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics