Skip to main content

Use of Single Molecule Fluorescence Polarization Microscopy to Study Protein Conformation and Dynamics of Kinesin–Microtubule Complexes

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1665))

Abstract

Single molecule fluorescence polarization microscopy (smFPM) is a technique that enables to monitor changes in the orientation of a single labeled protein domain. Here we describe a smFPM microscope set-up and protocols to investigate conformational changes associated with the movement of motor proteins along cytoskeletal tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peterman EJ, Sosa H, Moerner WE (2004) Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annu Rev Phys Chem 55:79–96

    Article  CAS  PubMed  Google Scholar 

  2. Belyy V, Yildiz A (2014) Processive cytoskeletal motors studied with single-molecule fluorescence techniques. FEBS Lett 588(19):3520–3525. doi:10.1016/j.febslet.2014.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elting Mary W, Spudich James A (2012) Future challenges in single-molecule fluorescence and laser trap approaches to studies of molecular motors. Dev Cell 23(6):1084–1091. doi:10.1016/j.devcel.2012.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  4. Warshaw DM, Hayes E, Gaffney D, Lauzon AM, Wu J, Kennedy G, Trybus K, Lowey S, Berger C (1998) Myosin conformational states determined by single fluorophore polarization. Proc Natl Acad Sci U S A 95(14):8034–8039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adachi K, Yasuda R, Noji H, Itoh H, Harada Y, Yoshida M, Kinosita K Jr (2000) Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc Natl Acad Sci U S A 97(13):7243–7247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ha T, Laurence TA, Chemla DS, Weiss S (1999) Polarization spectroscopy of single fluorescent molecules. J Phys Chem B 103(33):6839–6850

    Article  CAS  Google Scholar 

  7. Axelrod D (1989) Fluorescence polarization microscopy. Methods Cell Biol 30:333–352

    Article  CAS  PubMed  Google Scholar 

  8. Forkey JN, Quinlan ME, Shaw MA, Corrie JET, Goldman YE (2003) Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422:399–404

    Article  CAS  PubMed  Google Scholar 

  9. Sosa H, Peterman EJ, Moerner WE, Goldstein LS (2001) ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat Struct Biol 8(6):540–544

    Article  CAS  PubMed  Google Scholar 

  10. Asenjo AB, Krohn N, Sosa H (2003) Configuration of the two kinesin motor domains during ATP hydrolysis. Nat Struct Biol 10(10):836–842

    Article  CAS  PubMed  Google Scholar 

  11. Asenjo AB, Weinberg Y, Sosa H (2006) Nucleotide binding and hydrolysis induces a disorder-order transition in the kinesin neck-linker region. Nat Struct Mol Biol 13(7):648–654

    Article  CAS  PubMed  Google Scholar 

  12. Asenjo AB, Sosa H (2009) A mobile kinesin-head intermediate during the ATP-waiting state. Proc Natl Acad Sci U S A 106(14):5657–5662. doi:10.1073/pnas.0808355106. 0808355106 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chatterjee C, Benoit Matthieu PMH, DePaoli V, Diaz-Valencia Juan D, Asenjo Ana B, Gerfen Gary J, Sharp David J, Sosa H (2016) Distinct interaction modes of the kinesin-13 motor domain with the microtubule. Biophys J 110(7):1593–1604. doi:10.1016/j.bpj.2016.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94(5):1826–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Penzkofer A, Wiedmann J (1980) Orientation of transition dipole moments of rhodamine 6G determined by excited state absorption. Opt Commun 35(1):81–86

    Article  CAS  Google Scholar 

  16. Corrie JET, Brandmeier BD, Ferguson RE, Trentham DR, Kendrick-Jones I, Hopkins SC, van der Heide UA, Goldman YE, Sabido-David C, Dale RE, Criddle S, Irving M (1999) Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400(6743):425–430

    Article  CAS  PubMed  Google Scholar 

  17. Chen C, Cui X, Beausang JF, Zhang H, Farrell I, Cooperman BS, Goldman YE (2016) Elongation factor G initiates translocation through a power stroke. Proc Natl Acad Sci 113(27):7515–7520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller HP, Wilson L (2010) Preparation of microtubule protein and purified tubulin from bovine brain by cycles of assembly and disassembly and phosphocellulose chromatography. Methods Cell Biol 95:3–15. doi:10.1016/S0091-679X(10)95001-2. S0091-679X(10)95001-2 [pii]

    CAS  PubMed  Google Scholar 

  19. Peterman EJ, Sosa H, Goldstein LS, Moerner WE (2001) Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules. Biophys J 81(5):2851–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sosa H, Asenjo AB, Peterman EJ (2010) Structure and dynamics of the kinesin-microtubule interaction revealed by fluorescence polarization microscopy. Methods Cell Biol 95:505–519. S0091-679X(10)95025-5 [pii]. doi:10.1016/S0091-679X(10)95025-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Verbrugge S, Kapitein LC, Peterman EJ (2007) Kinesin moving through the spotlight: single-motor fluorescence microscopy with submillisecond time resolution. Biophys J 92(7):2536–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hackney DD, Jiang W (2001) Assays for kinesin microtubule-stimulated ATPase activity. Methods Mol Biol 164:65–71

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Sosa’s lab A.B.. Asenjo and M. Airo for discussions and proofreading the manuscript. This work was supported by NIH grant R01GM113164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernando Sosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Benoit, M.P.M.H., Sosa, H. (2018). Use of Single Molecule Fluorescence Polarization Microscopy to Study Protein Conformation and Dynamics of Kinesin–Microtubule Complexes. In: Peterman, E. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 1665. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7271-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7271-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7270-8

  • Online ISBN: 978-1-4939-7271-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics