Skip to main content

Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1665))

Abstract

Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered, while forces on the trapped objects can be accurately measured and exerted. Optical tweezers can typically obtain a nanometer spatial resolution, a picoNewton force resolution, and a millisecond time resolution, which makes them excellently suited to study biological processes from the single-cell down to the single-molecule level. In this chapter, we will provide an introduction on the use of optical tweezers in single-molecule approaches. We will introduce the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next we describe the components of an optical tweezers setup and their experimental relevance in single-molecule approaches. Finally, we provide a concise overview of commercial optical tweezers systems. Commercial systems are becoming increasingly available and provide access to single-molecule optical tweezers experiments without the need for a thorough background in physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159

    Article  CAS  Google Scholar 

  2. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288. doi:10.1364/OL.11.000288

    Article  CAS  PubMed  Google Scholar 

  3. Chu S (1991) Laser manipulation of atoms and particles. Science 253:861–866. doi:10.1126/science.253.5022.861

    Article  CAS  PubMed  Google Scholar 

  4. Chu S (1992) Laser trapping of neutral particles. Sci Am 266:70–76

    Article  Google Scholar 

  5. Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285. doi:10.1146/annurev.bb.23.060194.001335

    Article  CAS  PubMed  Google Scholar 

  6. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787. doi:10.1063/1.1785844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228. doi:10.1146/annurev.biochem.77.043007.090225

    Article  CAS  PubMed  Google Scholar 

  8. Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL (2014) Optical tweezers analysis of DNA-protein complexes. Chem Rev 114:3087–3119. doi:10.1021/cr4003006

    Article  CAS  PubMed  Google Scholar 

  9. Ashkin A, Dziedzic J (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520. doi:10.1126/science.3547653

    Article  CAS  PubMed  Google Scholar 

  10. Ashkin A, Dziedzic JM, Yamane T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771. doi:10.1038/330769a0

    Article  CAS  PubMed  Google Scholar 

  11. Block SM, Goldstein LSB, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352

    Article  CAS  PubMed  Google Scholar 

  12. Bustamante C, Macosko JC, Wuite GJL (2000) Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol 1:130–136. doi:10.1038/35040072

    Article  CAS  PubMed  Google Scholar 

  13. Davenport RJ, Wuite GJ, Landick R, Bustamante C (2000) Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287:2497–2500. doi:10.1126/science.287.5462.2497

    Article  CAS  PubMed  Google Scholar 

  14. Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799

    Article  CAS  PubMed  Google Scholar 

  15. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727. doi:10.1038/365721a0

    Article  CAS  PubMed  Google Scholar 

  16. Zamft B, Bintu L, Ishibashi T, Bustamante C (2012) Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proc Natl Acad Sci U S A 109:8948–8953. doi:10.1073/pnas.1205063109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wuite GJL, Smith SB, Young M, Keller D, Bustamante C (2000) Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404:103–106. doi:10.1038/35003614

    Article  CAS  PubMed  Google Scholar 

  18. Essevaz-Roulet B, Bockelmann U, Heslot F (1997) Mechanical separation of the complementary strands of DNA. Proc Natl Acad Sci 94:11935–11940. doi:10.1073/pnas.94.22.11935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kellermayer MS (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112–1116. doi:10.1126/science.276.5315.1112

    Article  CAS  PubMed  Google Scholar 

  20. Tskhovrebova L, Trinick J, Sleep JA, Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312. doi:10.1038/387308a0

    Article  CAS  PubMed  Google Scholar 

  21. Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282:902–907

    Article  CAS  PubMed  Google Scholar 

  22. Yin H, Wang MD, Svoboda K, Landick R, Block SM, Gelles J (1995) Transcription against an applied force. Science 270:1653–1657. doi:10.1126/science.270.5242.1653

    Article  CAS  PubMed  Google Scholar 

  23. Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421:423–427. doi:10.1038/nature01405

    Article  PubMed  Google Scholar 

  24. Gross P, Laurens N, Oddershede LB, Bockelmann U, Peterman EJG, Wuite GJL (2011) Quantifying how DNA stretches, melts and changes twist under tension. Nat Phys 7:731–736. doi:10.1038/nphys2002

    Article  CAS  Google Scholar 

  25. Dame RT, Noom MC, Wuite GJL (2006) Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444:387–390. doi:10.1038/nature05283

    Article  CAS  PubMed  Google Scholar 

  26. Neupane K, Foster DAN, Dee DR, Yu H, Wang F, Woodside MT (2016) Direct observation of transition paths during the folding of proteins and nucleic acids. Science 352:239–242. doi:10.1126/science.aad0637

    Article  CAS  PubMed  Google Scholar 

  27. Woodside MT, Block SM (2014) Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu Rev Biophys 43:19–39. doi:10.1146/annurev-biophys-051013-022754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gross P, Farge G, Peterman EJG, Wuite GJL (2010) Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions. Methods Enzymol 475:427–453. doi:10.1016/S0076-6879(10)75017-5

    Article  CAS  PubMed  Google Scholar 

  29. Brewer LR, Bianco PR (2008) Laminar flow cells for single-molecule studies of DNA-protein interactions. Nat Methods 5:517–525. doi:10.1038/nmeth.1217

    Article  CAS  PubMed  Google Scholar 

  30. van Mameren J, Peterman EJG, Wuite GJL (2008) See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Res 36:4381–4389. doi:10.1093/nar/gkn412

    Article  PubMed  PubMed Central  Google Scholar 

  31. Matthews JNA (2009) Commercial optical traps emerge from biophysics labs. Phys Today 62:26–28. doi:10.1063/1.3086092

    CAS  Google Scholar 

  32. Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61:569–582. doi:10.1016/S0006-3495(92)81860-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gittes F, Schmidt CF (1998) Signals and noise in micromechanical measurements. Methods Cell Biol 55:129–156

    Article  CAS  PubMed  Google Scholar 

  34. Moffitt JR, Chemla YR, Izhaky D, Bustamante C (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci U S A 103:9006–9011. doi:10.1073/pnas.0603342103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peterman EJG, Gittes F, Schmidt CF (2003) Laser-induced heating in optical traps. Biophys J 84:1308–1316. doi:10.1016/S0006-3495(03)74946-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vermeulen KC, Wuite GJL, Stienen GJM, Schmidt CF (2006) Optical trap stiffness in the presence and absence of spherical aberrations. Appl Opt 45:1812. doi:10.1364/AO.45.001812

    Article  PubMed  Google Scholar 

  37. Reihani SNS, Mir SA, Richardson AC, Oddershede LB (2011) Significant improvement of optical traps by tuning standard water immersion objectives. J Opt 13:105301. doi:10.1088/2040-8978/13/10/105301

    Article  Google Scholar 

  38. Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Käs J (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81:767–784. doi:10.1016/S0006-3495(01)75740-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mahamdeh M, Schäffer E (2009) Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution. Opt Express 17:17190. doi:10.1364/OE.17.017190

    Article  CAS  PubMed  Google Scholar 

  40. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81:2378–2388. doi:10.1016/S0006-3495(01)75884-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310. doi:10.1006/jcis.1996.0217

    Article  CAS  Google Scholar 

  42. Finer JT, Simmons RM, Spudich J (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119. doi:10.1038/368113a0

    Article  CAS  PubMed  Google Scholar 

  43. Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J Sel Top Quant Electron 2:1066–1076

    Article  CAS  Google Scholar 

  44. Denk W, Webb WW (1990) Optical measurement of picometer displacements of transparent microscopic objects. Appl Opt 29:2382. doi:10.1364/AO.29.002382

    Article  CAS  PubMed  Google Scholar 

  45. Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23:7–9

    Article  CAS  PubMed  Google Scholar 

  46. De Vlaminck I, Dekker C (2012) Recent advances in magnetic tweezers. Annu Rev Biophys 41:453–472. doi:10.1146/annurev-biophys-122311-100544

    Article  PubMed  Google Scholar 

  47. Sitters G, Kamsma D, Thalhammer G, Ritsch-Marte M, Peterman EJG, Wuite GJL (2014) Acoustic force spectroscopy. Nat Methods 12:47–50. doi:10.1038/nmeth.3183

    Article  PubMed  Google Scholar 

  48. Dreyer JK, Berg-Sørensen K, Oddershede L (2004) Improved axial position detection in optical tweezers measurements. Appl Opt 43:1991. doi:10.1364/AO.43.001991

    Article  PubMed  Google Scholar 

  49. Abbondanzieri E, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465. doi:10.1038/nature04268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Comstock MJ, Whitley KD, Jia H, Sokoloski J, Lohman TM, Ha T, Chemla YR (2015) Direct observation of structure-function relationship in a nucleic acid-processing enzyme. Science 348:352–354. doi:10.1126/science.aaa0130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Comstock MJ, Ha T, Chemla YR (2011) Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat Methods 8:335–340. doi:10.1038/nmeth.1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heller I, Sitters G, Broekmans OD, Biebricher AS, Wuite GJL, Peterman EJG (2014) Mobility analysis of super-resolved proteins on optically stretched DNA: comparing imaging techniques and parameters. ChemPhysChem 15:727–733. doi:10.1002/cphc.201300813

    Article  CAS  PubMed  Google Scholar 

  53. van Mameren J, Gross P, Farge G, Hooijman P, Modesti M, Falkenberg M, Wuite GJL, Peterman EJG (2009) Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. Proc Natl Acad Sci 106:18231–18236. doi:10.1073/pnas.0904322106

    Article  PubMed  PubMed Central  Google Scholar 

  54. van Mameren J, Modesti M, Kanaar R, Wyman C, Peterman EJG, Wuite GJL (2009) Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature 457:745–748. doi:10.1038/nature07581

    Article  PubMed  Google Scholar 

  55. King GA, Gross P, Bockelmann U, Modesti M, Wuite GJL, Peterman EJG (2013) Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy. Proc Natl Acad Sci U S A 110:3859–3864. doi:10.1073/pnas.1213676110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murade CU, Subramaniam V, Otto C, Bennink ML (2010) Force spectroscopy and fluorescence microscopy of dsDNA-YOYO-1 complexes: implications for the structure of dsDNA in the overstretching region. Nucleic Acids Res 38:3423–3431. doi:10.1093/nar/gkq034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bennink ML, Scharer OD, Kanaar R, Sakata-Sogawa K, Schins JM, Kanger JS, de Grooth BG, Greve J (1999) Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1. Cytometry 36:200–208. doi:10.1002/(Sici)1097-0320(19990701)36:3<200::Aid-Cyto9>3.0.Co;2-T

    Article  CAS  PubMed  Google Scholar 

  58. Hohng S, Zhou R, Nahas MK, Yu J, Schulten K, Lilley DMJ, Ha T (2007) Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction. Science 318:279–283. doi:10.1126/science.1146113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brouwer I, Sitters G, Candelli A, Heerema SJ, Heller I, Melo de AJ, Zhang H, Normanno D, Modesti M, Peterman EJG, Wuite GJL (2016) Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA. Nature 535:566–569. doi:10.1038/nature18643

    Article  CAS  PubMed  Google Scholar 

  60. Forget AL, Kowalczykowski SC (2012) Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482:423–427. doi:10.1038/nature10782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Heller I, Sitters G, Broekmans OD, Farge G, Menges C, Wende W, Hell SW, Peterman EJG, Wuite GJL (2013) STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat Methods 10:910–916. doi:10.1038/nmeth.2599

    Article  CAS  PubMed  Google Scholar 

  62. Block J, Witt H, Candelli A, Peterman EJG, Wuite GJL, Janshoff A, Köster S (2017) Nonlinear loading-rate-dependent force response of individual vimentin intermediate filaments to applied strain. Phys Rev Lett 118:48101. doi:10.1103/PhysRevLett.118.048101

    Article  Google Scholar 

  63. Brouwer I, Giniatullina A, Laurens N, van Weering JRT, Bald D, Wuite GJL, Groffen AJ (2015) Direct quantitative detection of Doc2b-induced hemifusion in optically trapped membranes. Nat Commun 6:8387. doi:10.1038/ncomms9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816. doi:10.1038/nature01935

    Article  CAS  PubMed  Google Scholar 

  65. Liesener J, Reicherter M, Haist T, Tiziani HJ (2000) Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185:77–82. doi:10.1016/S0030-4018(00)00990-1

    Article  CAS  Google Scholar 

  66. Mio C, Gong T, Terray A, Marr DWM (2000) Design of a scanning laser optical trap for multiparticle manipulation. Rev Sci Instrum 71:2196. doi:10.1063/1.1150605

    Article  CAS  Google Scholar 

  67. Visscher K, Brakenhoff GJ, Krol JJ (1993) Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. Cytometry 14:105–114. doi:10.1002/cyto.990140202

    Article  CAS  PubMed  Google Scholar 

  68. Noom MC, van den Broek B, van Mameren J, Wuite GJL (2007) Visualizing single DNA-bound proteins using DNA as a scanning probe. Nat Methods 4:1031–1036. doi:10.1038/nmeth1126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gijs J. L. Wuite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

van Mameren, J., Wuite, G.J.L., Heller, I. (2018). Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions. In: Peterman, E. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 1665. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7271-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7271-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7270-8

  • Online ISBN: 978-1-4939-7271-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics