Skip to main content

Comparative 3-Sample DIGE Analysis of Skeletal Muscles

  • Protocol
  • First Online:
Book cover Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1664))

Abstract

The skeletal muscle proteome consists of a large number of diverse protein species with a broad and dynamic concentration range. Since mature skeletal muscles are characterized by a specific combination of contractile cells with differing physiological and biochemical properties, it is essential to determine specific differences in the protein composition of fast, slow, and hybrid fibers. Fluorescence two-dimensional gel electrophoresis (DIGE) is a powerful comparative tool to analyze fiber type-specific differences between fast and slow muscles. In this chapter, the application of the DIGE method for the comparative analysis of different subtypes of skeletal muscles is outlined in detail. A standardized proteomic workflow is described, involving sample preparation, protein extraction, differential fluorescence labeling using a 3-dye system, first-dimension isoelectric focusing, second-dimension slab gel electrophoresis, DIGE image analysis, protein digestion, and mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliveira BM, Coorssen JR, Martins-de-Souza D (2014) 2DE: the phoenix of proteomics. J Proteomics 104:140–150

    Article  CAS  PubMed  Google Scholar 

  2. Murphy S, Dowling P, Ohlendieck K (2016) Comparative skeletal muscle proteomics using two-dimensional gel electrophoresis. Proteomes 4:27

    Article  PubMed Central  Google Scholar 

  3. Minden JS, Dowd SR, Meyer HE et al (2009) Difference gel electrophoresis. Electrophoresis 30:S156–S161

    Article  PubMed  Google Scholar 

  4. Timms JF, Cramer R (2008) Difference gel electrophoresis. Proteomics 8:4886–4897

    Article  CAS  PubMed  Google Scholar 

  5. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  6. Arentz G, Weiland F, Oehler MK et al (2015) State of the art of 2D DIGE. Proteomics Clin Appl 9:277–288

    Article  CAS  PubMed  Google Scholar 

  7. Alban A, David SO, Bjorkesten L et al (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    Article  CAS  PubMed  Google Scholar 

  8. Karp NA, Lilley KS (2005) Maximising sensitivity for detecting changes in protein expression: experimental design using minimal CyDyes. Proteomics 5:3105–3115

    Article  CAS  PubMed  Google Scholar 

  9. Viswanathan S, Unlü M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1:1351–1358

    Article  CAS  PubMed  Google Scholar 

  10. Tonge R, Shaw J, Middleton B et al (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    Article  CAS  PubMed  Google Scholar 

  11. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    Article  CAS  PubMed  Google Scholar 

  12. Karp NA, Kreil DP, Lilley KS (2004) Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics 4:1421–1432

    Article  CAS  PubMed  Google Scholar 

  13. Malm C, Hadrevi J, Bergström SA et al (2008) Evaluation of 2-D DIGE for skeletal muscle: protocol and repeatability. Scand J Clin Lab Invest 68:793–800

    Article  CAS  PubMed  Google Scholar 

  14. Carberry S, Zweyer M, Swandulla D et al (2013) Application of fluorescence two-dimensional difference in-gel electrophoresis as a proteomic biomarker discovery tool in muscular dystrophy research. Biology (Basel) 2:1438–1464

    Google Scholar 

  15. Hadrévi J, Hellström F, Kieselbach T et al (2011) Protein differences between human trapezius and vastus lateralis muscles determined with a proteomic approach. BMC Musculoskelet Disord 12:181

    Article  PubMed  PubMed Central  Google Scholar 

  16. Donoghue P, Doran P, Wynne K et al (2007) Proteomic profiling of chronic low-frequency stimulated fast muscle. Proteomics 7:3417–3430

    Article  CAS  PubMed  Google Scholar 

  17. Moriggi M, Cassano P, Vasso M et al (2008) A DIGE approach for the assessment of rat soleus muscle changes during unloading: effect of acetyl-L-carnitine supplementation. Proteomics 8:3588–3604

    Article  CAS  PubMed  Google Scholar 

  18. De Palma S, Ripamonti M, Vigano A et al (2007) Metabolic modulation induced by chronic hypoxia in rats using a comparative proteomic analysis of skeletal muscle tissue. J Proteome Res 6:1974–1984

    Article  PubMed  Google Scholar 

  19. Egan B, Dowling P, O'Connor PL et al (2011) 2-D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time course-dependent remodelling in response to 14 consecutive days of endurance exercise training. Proteomics 11:1413–1428

    Article  CAS  PubMed  Google Scholar 

  20. Burniston JG, Kenyani J, Gray D et al (2014) Conditional independence mapping of DIGE data reveals PDIA3 protein species as key nodes associated with muscle aerobic capacity. J Proteome 106:230–245

    Article  CAS  Google Scholar 

  21. Doran P, O'Connell K, Gannon J et al (2008) Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis. Proteomics 8:364–377

    Article  CAS  PubMed  Google Scholar 

  22. Staunton L, Zweyer M, Swandulla D et al (2012) Mass spectrometry-based proteomic analysis of middle-aged vs. aged vastus lateralis reveals increased levels of carbonic anhydrase isoform 3 in senescent human skeletal muscle. Int J Mol Med 30:723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Capitanio D, Vasso M, De Palma S et al (2016) Specific protein changes contribute to the differential muscle mass loss during ageing. Proteomics 16:645–656

    Article  CAS  PubMed  Google Scholar 

  24. Doran P, Martin G, Dowling P et al (2006) Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP. Proteomics 6:4610–4621

    Article  CAS  PubMed  Google Scholar 

  25. Gomez AM, Vanheel A, Losen M et al (2013) Proteomic analysis of rat tibialis anterior muscles at different stages of experimental autoimmune myasthenia gravis. J Neuroimmunol 261:141–145

    Article  CAS  PubMed  Google Scholar 

  26. De Palma S, Capitanio D, Vasso M et al (2014) Muscle proteomics reveals novel insights into the pathophysiological mechanisms of collagen VI myopathies. J Proteome Res 13:5022–5030

    Article  PubMed  Google Scholar 

  27. Dowling P, Murphy S, Ohlendieck K (2016) Proteomic profiling of muscle fibre type shifting in neuromuscular diseases. Expert Rev Proteomics 13:783–799

    Article  CAS  PubMed  Google Scholar 

  28. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531

    Article  CAS  PubMed  Google Scholar 

  29. Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50:500–509

    Article  CAS  PubMed  Google Scholar 

  30. Holland A, Ohlendieck K (2013) Proteomic profiling of the contractile apparatus from skeletal muscle. Expert Rev Proteomics 10:239–257

    Article  CAS  PubMed  Google Scholar 

  31. Doran P, Wilton SD, Fletcher S et al (2009) Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm. Proteomics 9:671–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  CAS  PubMed  Google Scholar 

  33. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299

    Article  CAS  PubMed  Google Scholar 

  34. Angel TE, Aryal UK, Hengel SM et al (2012) Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 41:3912–3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Altelaar AF, Heck AJ (2012) Trends in ultrasensitive proteomics. Curr Opin Chem Biol 16:206–213

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, Wu S, Stenoien DL et al (2014) High-throughput proteomics. Annu Rev Anal Chem 7:427–454

    Article  CAS  Google Scholar 

  37. Faini M, Stengel F, Aebersold R et al (2016) The evolving contribution of mass spectrometry to integrative structural biology. J Am Soc Mass Spectrom 27:966–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the author’s laboratory has been supported by project grants from the Irish Higher Education Authority, the Irish Health Research Board, and Muscular Dystrophy Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Ohlendieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ohlendieck, K. (2018). Comparative 3-Sample DIGE Analysis of Skeletal Muscles. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 1664. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7268-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7268-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7267-8

  • Online ISBN: 978-1-4939-7268-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics