Skip to main content

Immunofluorescence Microscopy for DIGE-Based Proteomics

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1664))

Abstract

Alterations in the proteome of a tissue in different settings, as assessed by difference gel electrophoresis, can be verified for single proteins using immunohistochemistry. In fluorescence immunohistochemistry, an antibody to a particular antigen is applied to tissue sections, and fluorophores conjugated to a secondary antibody allow for the detection of target antigen with fluorescent microscopy. Visual comparison is sufficient for the detection of significant alterations in the abundance of a certain protein in different settings. Additionally, unlike large-scale proteome analyses and Western blot methods, expression of target protein can be analyzed at the cellular level by immunohistochemistry. In this chapter, a protocol for the application of fluorescence immunohistochemistry for the detection of dystrophin in skeletal muscle sections is outlined, including sample preparation, tissue sectioning, and immunostaining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coons AH, Kaplan MH (1950) Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murphy S, Henry M, Meleady P et al (2015) Simultaneous pathoproteomic evaluation of the dystrophin-glycoprotein complex and secondary changes in the mdx-4cv mouse model of Duchenne muscular dystrophy. Biology (Basel) 4:397–423

    Google Scholar 

  3. Murphy S, Dowling P, Zweyer M et al (2016) Proteomic analysis of dystrophin deficiency and associated changes in the aged mdx-4cv heart model of dystrophinopathy-related cardiomyopathy. J Proteome 11(145):24–36

    Article  Google Scholar 

  4. Matsumura K, Campbell KP (1994) Dystrophin-glycoprotein complex: its role in the molecular pathogenesis of muscular dystrophies. Muscle Nerve 17:2–15

    Article  CAS  PubMed  Google Scholar 

  5. Allen DG, Gervasio OL, Yeung EW et al (2010) Calcium and the damage pathways in muscular dystrophy. Can J Physiol Pharmacol 88:83–91

    Article  CAS  PubMed  Google Scholar 

  6. Mallouk N, Jacquemond V, Allard B (2000) Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci U S A 97:4950–4955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumamoto T, Fujimoto S, Ito T et al (2000) Proteasome expression in the skeletal muscles of patients with muscular dystrophy. Acta Neuropathol 100:595–602

    Article  CAS  PubMed  Google Scholar 

  8. Menke A, Jockusch H (1991) Decreased osmotic stability of dystrophin-less muscle cells from the mdx mouse. Nature 349:69–71

    Article  CAS  PubMed  Google Scholar 

  9. Holland A, Carberry S, Ohlendieck K (2013) Proteomics of the dystrophin-glycoprotein complex and dystrophinopathy. Curr Protein Pept Sci 14:680–697

    Article  CAS  PubMed  Google Scholar 

  10. Carberry S, Zweyer M, Swandulla D et al (2013) Application of fluorescence two-dimensional difference in-gel electrophoresis as a proteomic biomarker discovery tool in muscular dystrophy research. Biology (Basel) 2:1438–1464

    Google Scholar 

  11. Carberry S, Zweyer M, Swandulla D et al (2012) Proteomics reveals drastic increase of extracellular matrix proteins collagen and dermatopontin in the aged mdx diaphragm model of Duchenne muscular dystrophy. Int J Mol Med 30:229–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mundegar RR, Franke E, Schäfer et al (2008) Reduction of high background staining by heating unfixed mouse skeletal muscle tissue sections allows for detection of thermostable antigens with murine monoclonal antibodies. J Histochem Cytochem 56:969–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Swandulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mundegar, R.R., Zweyer, M., Swandulla, D. (2018). Immunofluorescence Microscopy for DIGE-Based Proteomics. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 1664. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7268-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7268-5_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7267-8

  • Online ISBN: 978-1-4939-7268-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics