Skip to main content

Enzyme Assay Methods to Validate DIGE Proteomics Data

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1664))

Abstract

Enzyme activity assay methods can be used to corroborate the results generated by Difference Gel Electrophoresis (DIGE) proteomic experiments. Two assay methods were chosen to demonstrate how this can be achieved. Assays for determining the activity of superoxide dismutase and NADH dehydrogenase are outlined in detail in this paper. These methods were chosen as examples because they are frequently used in conjunction with DIGE proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandberg AS, Buschmann V, Kapusta P et al (2016) Use of time-resolved fluorescence to improve sensitivity and dynamic range of gel-based proteomics. Anal Chem 88(6):3067–3074. doi:10.1021/acs.analchem.5b03805

    Article  CAS  PubMed  Google Scholar 

  2. O’Connell K, Ohlendieck K (2009) Proteomic DIGE analysis of the mitochondria-enriched fraction from aged rat skeletal muscle. Proteomics 9(24):5509–5524. doi:10.1002/pmic.200900472

    Article  PubMed  Google Scholar 

  3. Mandili G, Alchera E, Merlin S et al (2015) Mouse hepatocytes and LSEC proteome reveal novel mechanisms of ischemia/reperfusion damage and protection by A2aR stimulation. J Hepatol 62(3):573–580. doi:10.1016/j.jhep.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Jin Z, Gao F et al (2014) Comparative proteomic analysis of Dan’er malts produced from distinct malting processes by two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE). J Agric Food Chem 62:9310–9316

    Article  CAS  PubMed  Google Scholar 

  5. Bentaib A, De Tullio P, Chneiweiss H et al (2014) Metabolic reprogramming in transformed mouse cortical astrocytes: a proteomic study. J Proteome 113:292–314. doi:10.1016/j.jprot.2014.09.019.

    Article  Google Scholar 

  6. Faure C, Morio B, Chafey P et al (2013) Citrulline enhances myofibrillar constituents expression of skeletal muscle and induces a switch in muscle energy metabolism in malnourished aged rats. Proteomics 13(14):2191–2201. doi:10.1002/pmic.201200262

    Article  CAS  PubMed  Google Scholar 

  7. Jia H, Shao M, He Y et al (2015) Proteome dynamics and physiological responses to short-term salt stress in Brassica napus leaves. PLoS One 10(12):e0144808. doi:10.1371/journal.pone.0144808

    Article  PubMed  PubMed Central  Google Scholar 

  8. Naraginti S, Li Y, Wu Y et al (2016) Mechanistic study of visible light driven photocatalytic degradation of EDC 17[small alpha]-ethinyl estradiol and azo dye Acid Black-52: phytotoxicity assessment of intermediates. RSC Adv 6(90):87246–87257. doi:10.1039/C6RA20702B

    Article  CAS  Google Scholar 

  9. Bailly C, Benamar A, Corbineau F, Côme D (1996) Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol Plant 97(1):104–110. doi:10.1111/j.1399-3054.1996.tb00485.x

    Article  CAS  Google Scholar 

  10. Hirst J (2010) Towards the molecular mechanism of respiratory complex I. Biochem J 425(2):327–339. doi:10.1042/BJ20091382

    Article  CAS  Google Scholar 

  11. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  12. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59(2):309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doran P, Dowling P, Lohan J et al (2004) Subproteomics analysis of Ca2+-binding proteins demonstrates decreased calsequestrin expression in dystrophic mouse skeletal muscle. Eur J Biochem 271(19):3943–3952. doi:10.1111/j.1432-1033.2004.04332.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Dowd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Dowd, A. (2018). Enzyme Assay Methods to Validate DIGE Proteomics Data. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 1664. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7268-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7268-5_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7267-8

  • Online ISBN: 978-1-4939-7268-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics