Skip to main content

Subcellular Fractionation for DIGE-Based Proteomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1664))

Abstract

Mass spectrometry-based protein methodologies have revolutionized the field of analytical biochemistry and enable the identification of hundreds to thousands of proteins in biological fluids, cell lines, and tissue. This methodology requires the initial separation of a protein constellation and this has been successfully achieved using gel-based techniques, particularly that of two-dimensional difference gel electrophoresis (2D-DIGE). However, given the complexity of the proteome, fractionation techniques may be required to optimize the detection of low-abundance proteins, which are often under-represented, but which may represent important players in health and disease. Such subcellular fractionation protocols typically utilize density-gradient centrifugation and have enabled the enrichment of crude microsomes, the cytosol, the plasmalemma, the nuclei, and the mitochondria. In this chapter, we describe the experimental steps involved in the enrichment of crude microsomes from skeletal muscle using differential centrifugation and subsequent verification of enrichment by gel electrophoresis and immunoblotting, prior to comparative DIGE analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  2. C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  3. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  4. Bensmail H, Haoudi A (2003) Postgenomics: proteomics and bioinformatics in cancer research. J Biomed Biotechnol 2003:217–230

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gregorich ZR, Ge Y (2014) Top-down proteomics in health and disease: challenges and opportunities. Proteomics 14:1195–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983

    Article  CAS  PubMed  Google Scholar 

  7. Deshmukh AS, Murgia M, Nagaraj N et al (2015) Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol Cell Proteomics 14:841–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  PubMed Central  Google Scholar 

  9. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    CAS  PubMed  Google Scholar 

  10. Lilley KS, Friedman DB (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomic. Expert Rev Proteomics 1:401–409

    Article  CAS  PubMed  Google Scholar 

  11. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  12. Oliva K, Barker G, Rice GE et al (2013) 2D-DIGE to identify proteins associated with gestational diabetes in omental adipose tissue. J Endocrinol 218:165–178

    Article  CAS  PubMed  Google Scholar 

  13. Doran P, O'Connell K, Gannon J et al (2008) Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis. Proteomics 8:364–377

    Article  CAS  PubMed  Google Scholar 

  14. Rong Y, Jin D, Hou C et al (2010) Proteomics analysis of serum protein profiling in pancreatic cancer patients by DIGE: up-regulation of mannose-binding lectin 2 and myosin light chain kinase 2. BMC Gastroenterol 10:68

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ummanni R, Mundt F, Pospisil H et al (2011) Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. PLoS One e16833:6

    Google Scholar 

  16. Lewis C, Ohlendieck K (2010) Mass spectrometric identification of dystrophin isoform Dp427 by on-membrane digestion of sarcolemma from skeletal muscle. Anal Biochem 404:197–203

    Article  CAS  PubMed  Google Scholar 

  17. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  PubMed  Google Scholar 

  18. Coenen-Stass AM, McClorey G, Manzano R et al (2015) Identification of novel, therapy-responsive protein biomarkers in a mouse model of Duchenne muscular dystrophy by aptamer-based serum proteomics. Sci Rep 5:17014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hortin GL, Jortani SA, Ritchie JC (2006) Proteomics: a new diagnostic frontier. Clin Chem 52:1218–1222

    Article  CAS  PubMed  Google Scholar 

  20. Pieper R, Gatlin CL, Makusky AJ et al (2003) The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics 3:1345–1364

    Article  CAS  PubMed  Google Scholar 

  21. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531

    Article  CAS  PubMed  Google Scholar 

  22. Ohlendieck K (2011) Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skelet Muscle 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gygi SP, Corthals GL, Zhang Y et al (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 97:9390–9395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fonslow BR, Carvalho PC, Academia K et al (2011) Improvements in proteomic metrics of low abundance proteins through proteome equalization using ProteoMiner prior to MudPIT. J Proteome Res 10:3690–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteome 74:1829–1841

    Article  CAS  Google Scholar 

  26. Tu C, Rudnick PA, Martinez MY et al (2010) Depletion of abundant plasma proteins and limitations of plasma proteomics. J Proteome Res 9:4982–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O'Connell K, Ohlendieck K (2009) Proteomic DIGE analysis of the mitochondria-enriched fraction from aged rat skeletal muscle. Proteomics 9:5509–5524

    Article  PubMed  Google Scholar 

  28. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  PubMed  Google Scholar 

  29. Wallace DC (2000) Mitochondrial defects in cardiomyopathy and neuromuscular disease. Am Heart J 139:S70–S85

    Article  CAS  PubMed  Google Scholar 

  30. Carberry S, Zweyer M, Swandulla D, Ohlendieck K (2014) Comparative proteomic analysis of the contractile-protein-depleted fraction from normal versus dystrophic skeletal muscle. Anal Biochem 446:108–115

    Article  CAS  PubMed  Google Scholar 

  31. Maughan DW, Henkin JA, Vigoreaux JO (2005) Concentrations of glycolytic enzymes and other cytosolic proteins in the diffusible fraction of a vertebrate muscle proteome. Mol Cell Proteomics 4:1541–1549

    Article  CAS  PubMed  Google Scholar 

  32. Alban A, David SO, Bjorkesten L et al (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    Article  CAS  PubMed  Google Scholar 

  33. Malm C, Hadrevi J, Bergström SA et al (2008) Evaluation of 2-D DIGE for skeletal muscle: protocol and repeatability. Scand J Clin Lab Invest 68:793–800

    Article  CAS  PubMed  Google Scholar 

  34. Lilley KS, Razzaq A, Dupree P (2002) Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol 6:46–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratory has been supported by project grants from the Irish Health Research Board and Muscular Dystrophy Ireland, as well as a Hume Scholarship from Maynooth University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Murphy, S. (2018). Subcellular Fractionation for DIGE-Based Proteomics. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 1664. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7268-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7268-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7267-8

  • Online ISBN: 978-1-4939-7268-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics