Skip to main content

DIGE Analysis of Human Tissues

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1664))

Abstract

Two-dimensional difference gel electrophoresis (2-D DIGE) is an advanced and elegant gel electrophoretic analytical tool for comparative protein assessment. It is based on two-dimensional gel electrophoresis (2-DE) separation of fluorescently labeled protein extracts. The tagging procedures are designed to not interfere with the chemical properties of proteins with respect to their pI and electrophoretic mobility, once a proper labeling protocol is followed. The two-dye or three-dye systems can be adopted and their choice depends on specific applications. Furthermore, the use of an internal pooled standard makes 2-D DIGE a highly accurate quantitative method enabling multiple protein samples to be separated on the same two-dimensional gel. The image matching and cross-gel statistical analysis generates robust quantitative results making data validation by independent technologies successful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee JM, Kohn EC (2010) Proteomics as a guiding tool for more effective personalized therapy. Ann Oncol 21(Suppl 7):vii205–vii210. doi:10.1093/annonc/mdq375

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pal R, Alves G, Larsen JP, Moller SG (2014) New insight into neurodegeneration: the role of proteomics. Mol Neurobiol 49(3):1181–1199. doi:10.1007/s12035-013-8590-8

    Article  CAS  PubMed  Google Scholar 

  3. Huang Z, Ma L, Huang C, Li Q, Nice EC (2016) Proteomic profiling of human plasma for cancer biomarker discovery. Proteomics 17(6). doi:10.1002/pmic.201600240

  4. Kim EY, Kim WK, Oh KJ, Han BS, Lee SC, Bae KH (2015) Recent advances in proteomic studies of adipose tissues and adipocytes. Int J Mol Sci 16(3):4581–4599. doi:10.3390/ijms16034581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pagel O, Loroch S, Sickmann A, Zahedi RP (2015) Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev Proteomics 12(3):235–253. doi:10.1586/14789450.2015.1042867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077. doi:10.1002/elps.1150181133

    Article  CAS  PubMed  Google Scholar 

  7. Garrels JI (1979) Two dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J Biol Chem 254(16):7961–7977

    CAS  PubMed  Google Scholar 

  8. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26(3):231–243

    CAS  PubMed  Google Scholar 

  9. O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250(10):4007–4021

    PubMed  PubMed Central  Google Scholar 

  10. Blundon MA, Schlesinger DR, Parthasarathy A, Smith SL, Kolev HM, Vinson DA, Kunttas-Tatli E, McCartney BM, Minden JS (2016) Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of beta-catenin. Development 143(14):2629–2640. doi:10.1242/dev.130567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burnham-Marusich AR, Plechaty AM, Berninsone PM (2014) Size-matched alkyne-conjugated cyanine fluorophores to identify differences in protein glycosylation. Electrophoresis 35(18):2621–2625. doi:10.1002/elps.201400241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qu Z, Meng F, Zhou H, Li J, Wang Q, Wei F, Cheng J, Greenlief CM, Lubahn DB, Sun GY, Liu S, Gu Z (2014) NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells. J Neuroinflammation 11:17. doi:10.1186/1742-2094-11-17

    Article  PubMed  PubMed Central  Google Scholar 

  13. Albrethsen J, Miller LM, Novikoff PM, Angeletti RH (2011) Gel-based proteomics of liver cancer progression in rat. Biochim Biophys Acta 1814(10):1367–1376. doi:10.1016/j.bbapap.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  14. Gharbi S, Gaffney P, Yang A, Zvelebil MJ, Cramer R, Waterfield MD, Timms JF (2002) Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics 1(2):91–98

    Article  CAS  PubMed  Google Scholar 

  15. Zhou G, Li H, DeCamp D, Chen S, Shu H, Gong Y, Flaig M, Gillespie JW, Hu N, Taylor PR, Emmert-Buck MR, Liotta LA, Petricoin EF 3rd, Zhao Y (2002) 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 1(2):117–124

    Article  CAS  PubMed  Google Scholar 

  16. Swatton JE, Prabakaran S, Karp NA, Lilley KS, Bahn S (2004) Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Mol Psychiatry 9(2):128–143. doi:10.1038/sj.mp.4001475. 4001475 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3(1):36–44. doi:10.1002/pmic.200390006

    Article  CAS  PubMed  Google Scholar 

  18. Knowles MR, Cervino S, Skynner HA, Hunt SP, de Felipe C, Salim K, Meneses-Lorente G, McAllister G, Guest PC (2003) Multiplex proteomic analysis by two-dimensional differential in-gel electrophoresis. Proteomics 3(7):1162–1171. doi:10.1002/pmic.200300437

    Article  CAS  PubMed  Google Scholar 

  19. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382(3):669–678. doi:10.1007/s00216-005-3126-3

    Article  CAS  PubMed  Google Scholar 

  20. Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 73(11):2064–2077. doi:10.1016/j.jprot.2010.05.016

    Article  CAS  PubMed  Google Scholar 

  21. Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685. doi:10.1002/pmic.200401031

    Article  PubMed  Google Scholar 

  22. Righetti PG, Gelfi C, Chiari M (1996) Isoelectric focusing in immobilized pH gradients. Methods Enzymol 270:235–255

    Article  CAS  PubMed  Google Scholar 

  23. Righetti PG, Gelfi C (1997) Electrophoresis gel media: the state of the art. J Chromatogr B Biomed Sci Appl 699(1–2):63–75

    Article  CAS  PubMed  Google Scholar 

  24. Yan JX, Devenish AT, Wait R, Stone T, Lewis S, Fowler S (2002) Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2(12):1682–1698. doi:10.1002/1615-9861(200212)2:12<1682::AID-PROT1682>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  25. Dominguez-Santos R, Kosalkova K, Garcia-Estrada C, Barreiro C, Ibanez A, Morales A, Martin JF (2017) Casein phosphopeptides and CaCl2 increase penicillin production and cause an increment in microbody/peroxisome proteins in Penicillium chrysogenum. J Proteomics 156:52–62. doi:10.1016/j.jprot.2016.12.021

    Article  CAS  PubMed  Google Scholar 

  26. Dautel F, Kalkhof S, Trump S, Michaelson J, Beyer A, Lehmann I, von Bergen M (2011) DIGE-based protein expression analysis of B[a]P-exposed hepatoma cells reveals a complex stress response including alterations in oxidative stress, cell cycle control, and cytoskeleton motility at toxic and subacute concentrations. J Proteome Res 10(2):379–393. doi:10.1021/pr100723d

    Article  CAS  PubMed  Google Scholar 

  27. Lim LC, Looi ML, Zakaria SZ, Sagap I, Rose IM, Chin SF, Jamal R (2016) Identification of differentially expressed proteins in the serum of colorectal cancer patients using 2D-DIGE proteomics analysis. Pathol Oncol Res 22(1):169–177. doi:10.1007/s12253-015-9991-y

    Article  CAS  PubMed  Google Scholar 

  28. Friedman DB, Hill S, Keller JW, Merchant NB, Levy SE, Coffey RJ, Caprioli RM (2004) Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4(3):793–811. doi:10.1002/pmic.200300635

    Article  CAS  PubMed  Google Scholar 

  29. Gade D, Thiermann J, Markowsky D, Rabus R (2003) Evaluation of two-dimensional difference gel electrophoresis for protein profiling. Soluble proteins of the marine bacterium Pirellula sp. strain 1. J Mol Microbiol Biotechnol 5(4):240–251. doi:10.1159/000071076. MMB2003005004240 [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Bollag D, Edelstein SJ (1991) Protein extraction. In: Protein methods. Wiley-Liss, New York

    Google Scholar 

  31. Scopes R (1987) Making an extract. In: Protein purification: principles and practice, 2nd edn. Springer Verlag, New York

    Chapter  Google Scholar 

  32. Pennington SR, Wilkins MR, Hochstrasser DF, Dunn MJ (1997) Proteome analysis: from protein characterization to biological function. Trends Cell Biol 7(4):168–173. doi:10.1016/S0962-8924(97)01033-7. S0962-8924(97)01033-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  33. Lenstra JA, Bloemendal H (1983) Topography of the total protein population from cultured cells upon fractionation by chemical extractions. Eur J Biochem 135(3):413–423

    Article  CAS  PubMed  Google Scholar 

  34. Toda T, Ishijima Y, Matsushita H, Yoshida M, Kimura N (1994) Detection of thymopoietin-responsive proteins in nude mouse spleen cells by two-dimensional polyacrylamide gel electrophoresis and image processing. Electrophoresis 15(7):984–987

    Article  CAS  PubMed  Google Scholar 

  35. Cull M, McHenry CS (1990) Preparation of extracts from prokaryotes. Methods Enzymol 182:147–153

    Article  CAS  PubMed  Google Scholar 

  36. Jazwinski SM (1990) Preparation of extracts from yeast. Methods Enzymol 182:154–174

    Article  CAS  PubMed  Google Scholar 

  37. Kawaguchi S, Kuramitsu S (1995) Separation of heat-stable proteins from Thermus thermophilus HB8 by two-dimensional electrophoresis. Electrophoresis 16(6):1060–1066

    Article  CAS  PubMed  Google Scholar 

  38. Teixeira-Gomes AP, Cloeckaert A, Bezard G, Dubray G, Zygmunt MS (1997) Mapping and identification of Brucella melitensis proteins by two-dimensional electrophoresis and microsequencing. Electrophoresis 18(1):156–162. doi:10.1002/elps.1150180128

    Article  CAS  PubMed  Google Scholar 

  39. Gorg A, Boguth G, Obermaier C, Posch A, Weiss W (1995) Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16(7):1079–1086

    Article  CAS  PubMed  Google Scholar 

  40. Gorg A, Postel W, Domscheit A, Gunther S (1988) Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare): method, reproducibility and genetic aspects. Electrophoresis 9(11):681–692. doi:10.1002/elps.1150091103

    Article  CAS  PubMed  Google Scholar 

  41. Gorg A, Postel W, Gunther S (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9(9):531–546. doi:10.1002/elps.1150090913

    Article  CAS  PubMed  Google Scholar 

  42. Dignam JD (1990) Preparation of extracts from higher eukaryotes. Methods Enzymol 182:194–203

    Article  CAS  PubMed  Google Scholar 

  43. Blomberg A, Blomberg L, Norbeck J, Fey SJ, Larsen PM, Larsen M, Roepstorff P, Degand H, Boutry M, Posch A et al (1995) Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis 16(10):1935–1945

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Telethon foundation (grant N. GGP08107D to C.G.), EU community (grant BIO-NMD N. 241665 to C.G.) and Italian Ministry of University and Scientific Research (grant FIRB RBRN07BMCT to C.G. and PRIN 2015FBNB5Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Gelfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gelfi, C., Capitanio, D. (2018). DIGE Analysis of Human Tissues. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 1664. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7268-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7268-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7267-8

  • Online ISBN: 978-1-4939-7268-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics