Skip to main content

Two-Dimensional Gel Electrophoresis and 2D-DIGE

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1664))

Abstract

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  PubMed Central  Google Scholar 

  2. Westermeier R (2016) 2D gel-based proteomics: there’s life in the old dog yet. Arch Physiol Biochem 122:236–237

    Article  CAS  PubMed  Google Scholar 

  3. Rabilloud T (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3–10

    Article  CAS  PubMed  Google Scholar 

  4. Murphy S, Dowling P, Ohlendieck K (2016) Comparative skeletal muscle proteomics using two-dimensional gel electrophoresis. Proteomes 4(3):E27

    Article  PubMed  Google Scholar 

  5. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  6. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    Article  CAS  PubMed  Google Scholar 

  7. Kondo T, Hirohashi S (2009) Application of 2D-DIGE in cancer proteomics toward personalized medicine. Methods Mol Biol 577:135–154

    Article  CAS  PubMed  Google Scholar 

  8. Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199(2):223–231

    Article  PubMed  Google Scholar 

  9. Sunderhaus S, Eubel H, Braun HP (2007) Two-dimensional blue native/blue native polyacrylamide gel electrophoresis for the characterization of mitochondrial protein complexes and supercomplexes. Methods Mol Biol 372:315–324

    Article  CAS  PubMed  Google Scholar 

  10. Kikuchi S, Bédard J, Nakai M (2011) One- and two-dimensional blue native-PAGE and immunodetection of low-abundance chloroplast membrane protein complexes. Methods Mol Biol 775:3–17

    Article  CAS  PubMed  Google Scholar 

  11. Wang F, Wang L, Xu Z, Liang G (2013) Identification and analysis of multi-protein complexes in placenta. PLoS One 8(4):e62988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Linge A, Kennedy S, O'Flynn D, Beatty S, Moriarty P, Henry M, Clynes M, Larkin A, Meleady P (2012) Differential expression of fourteen proteins between uveal melanoma from patients who subsequently developed distant metastases versus those who did not. Invest Ophthalmol Vis Sci 53:4634–4643

    Article  CAS  PubMed  Google Scholar 

  13. Strohkamp S, Gemoll T, Habermann JK (2016) Possibilities and limitations of 2DE-based analyses for identifying low-abundant tumor markers in human serum and plasma. Proteomics 16:2519–2532

    Article  CAS  PubMed  Google Scholar 

  14. Meleady P, Doolan P, Henry M, Barron N, Keenan J, O'Sullivan F, Clarke C, Gammell P, Melville MW, Leonard M, Clynes M (2011) Sustained productivity in recombinant Chinese hamster ovary (CHO) cell lines: proteome analysis of the molecular basis for a process-related phenotype. BMC Biotechnol 11:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ (2013) The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology. Curr Opin Biotechnol 24:1102–1107

    Article  PubMed  Google Scholar 

  16. Mertins P, Yang F, Liu T, Mani DR, Petyuk VA, Gillette MA, Clauser KR, Qiao JW, Gritsenko MA, Moore RJ, Levine DA, Townsend R, Erdmann-Gilmore P, Snider JE, Davies SR, Ruggles KV, Fenyo D, Kitchens RT, Li S, Olvera N, Dao F, Rodriguez H, Chan DW, Liebler D, White F, Rodland KD, Mills GB, Smith RD, Paulovich AG, Ellis M, Carr SA (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13:1690–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Espina V, Edmiston KH, Heiby M, Pierobon M, Sciro M, Merritt B, Banks S, Deng J, VanMeter AJ, Geho DH, Pastore L, Sennesh J, Petricoin EF 3rd, Liotta LA (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7:1998–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    Article  PubMed  Google Scholar 

  19. Molloy MP (2000) Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem 280:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    Article  PubMed  Google Scholar 

  21. Lee YH, Tan HT, Chung MC (2010) Subcellular fractionation methods and strategies for proteomics. Proteomics 10:3935–3956

    Article  CAS  PubMed  Google Scholar 

  22. Drissi R, Dubois ML, Boisvert FM (2013) Proteomics methods for subcellular proteome analysis. FEBS j 280:5626–5634

    Article  CAS  PubMed  Google Scholar 

  23. Kumar A, Baycin-Hizal D, Shiloach J, Bowen MA, Betenbaugh MJ (2015) Coupling enrichment methods with proteomics for understanding and treating disease. Proteomics Clin Appl 9:33–47

    Article  CAS  PubMed  Google Scholar 

  24. Dowling P, Meleady P, Henry M, Clynes M (2010) Recent advances in clinical proteomics using mass spectrometry. Bioanalysis 2:1609–1615

    Article  CAS  PubMed  Google Scholar 

  25. Wu C, Duan J, Liu T, Smith RD, Qian WJ (2016) Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids. J Chromatogr B Analyt Technol Biomed Life Sci 1021:57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    Article  CAS  PubMed  Google Scholar 

  27. Viswanathan S, Unlü M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1:1351–1358

    Article  CAS  PubMed  Google Scholar 

  28. Lilley KS, Razzaq A, Dupree P (2002) Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol 6:46–50

    Article  CAS  PubMed  Google Scholar 

  29. Arentz G, Weiland F, Oehler MK, Hoffmann P (2015) State of the art of 2D DIGE. Proteomics Clin Appl 9:277–288

    Article  CAS  PubMed  Google Scholar 

  30. Shaw J, Rowlinson R, Nickson J, Stone T, Sweet A, Williams K, Tonge R (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3:1181–1195

    Article  CAS  PubMed  Google Scholar 

  31. Arnold GJ, Fröhlich T (2012) 2D DIGE saturation labeling for minute sample amounts. Methods Mol Biol 854:89–112

    Article  CAS  PubMed  Google Scholar 

  32. Lilley KS, Friedman DB (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics 1:401–409

    Article  CAS  PubMed  Google Scholar 

  33. Tannu NS, Hemby SE (2006) Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 1:1732–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karp NA, McCormick PS, Russell MR, Lilley KS (2007) Experimental and statistical considerations to avoid false conclusions in proteomics studies using differential in-gel electrophoresis. Mol Cell Proteomics 6:1354–1364

    Article  CAS  PubMed  Google Scholar 

  35. Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 97:9390–9395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bunai K, Yamane K (2005) Effectiveness and limitation of two-dimensional gel electrophoresis in bacterial membrane protein proteomics and perspectives. J Chromatogr B Analyt Technol Biomed Life Sci 815:227–236

    Article  CAS  PubMed  Google Scholar 

  37. Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21(6):1054–1070

    Article  CAS  PubMed  Google Scholar 

  38. Rabilloud T (2009) Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 30(Suppl 1):S174–S180

    Article  PubMed  Google Scholar 

  39. Westermeier R (2014) Looking at proteins from two dimensions: a review on five decades of 2D electrophoresis. Arch Physiol Biochem 120:168–172

    Article  CAS  PubMed  Google Scholar 

  40. Luche S, Santoni V, Rabilloud T (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3:249–253

    Article  CAS  PubMed  Google Scholar 

  41. Wu WW, Wang G, Baek SJ, Shen RF (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5:651–658

    Article  CAS  PubMed  Google Scholar 

  42. Meleady P, Henry M, Gammell P, Doolan P, Sinacore M, Melville M, Francullo L, Leonard M, Charlebois T, Clynes M (2008) Proteomic profiling of CHO cells with enhanced rhBMP-2 productivity following co-expression of PACEsol. Proteomics 8:2611–2624

    Article  CAS  PubMed  Google Scholar 

  43. Kumar N, Gammell P, Meleady P, Henry M, Clynes M (2008) Differential protein expression following low temperature culture of suspension CHO-K1 cells. BMC Biotechnol 8:42

    Article  PubMed  PubMed Central  Google Scholar 

  44. Doolan P, Meleady P, Barron N, Henry M, Gallagher R, Gammell P, Melville M, Sinacore M, McCarthy K, Leonard M, Charlebois T, Clynes M (2010) Microarray and proteomics expression profiling identifies several candidates, including the valosin-containing protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines. Biotechnol Bioeng 106:42–56

    CAS  PubMed  Google Scholar 

  45. Baik JY, Lee GM (2010) A DIGE approach for the assessment of differential expression of the CHO proteome under sodium butyrate addition: effect of Bcl-x(L) overexpression. Biotechnol Bioeng 105:358–367

    Article  CAS  PubMed  Google Scholar 

  46. Kim JY, Kim YG, Lee GM (2012) Differential in-gel electrophoresis (DIGE) analysis of CHO cells under hyperosmotic pressure: osmoprotective effect of glycine betaine addition. Biotechnol Bioeng 109:1395–1403

    Article  CAS  PubMed  Google Scholar 

  47. Blondeel EJ, Ho R, Schulze S, Sokolenko S, Guillemette SR, Slivac I, Durocher Y, Guillemette JG, McConkey BJ, Chang D, Aucoin MG (2016) An omics approach to rational feed: enhancing growth in CHO cultures with NMR metabolomics and 2D-DIGE proteomics. J Biotechnol 234:127–138

    Article  CAS  PubMed  Google Scholar 

  48. Darja O, Stanislav M, Saša S, Andrej F, Lea B, Branka J (2016) Responses of CHO cell lines to increased pCO2 at normal (37 °C) and reduced (33 °C) culture temperatures. J Biotechnol 219:98–109

    Article  CAS  PubMed  Google Scholar 

  49. Wingens M, Gätgens J, Schmidt A, Albaum SP, Büntemeyer H, Noll T, Hoffrogge R (2015) 2D-DIGE screening of high-productive CHO cells under glucose limitation–basic changes in the proteome equipment and hints for epigenetic effects. J Biotechnol 201:86–97

    Article  CAS  PubMed  Google Scholar 

  50. Tscheliessnig AL, Konrath J, Bates R, Jungbauer A (2013) Host cell protein analysis in therapeutic protein bioprocessing–methods and applications. Biotechnol J 8:655–670

    Article  CAS  PubMed  Google Scholar 

  51. Grzeskowiak JK, Tscheliessnig A, Toh PC, Chusainow J, Lee YY, Wong N, Jungbauer A (2009) Two-dimensional fluorescence difference gel electrophoresis for comparison of affinity and non-affinity based downstream processing of recombinant monoclonal antibody. J Chromatogr A 1216:4902–4912

    Article  CAS  PubMed  Google Scholar 

  52. Grzeskowiak JK, Tscheliessnig A, Toh PC, Chusainow J, Lee YY, Wong N, Jungbauer A (2009) 2-D DIGE to expedite downstream process development for human monoclonal antibody purification. Protein Expr Purif 66:58–65

    Article  CAS  PubMed  Google Scholar 

  53. Grzeskowiak JK, Tscheliessnig A, MW W, Toh PC, Chusainow J, Lee YY, Wong N, Jungbauer A (2010) Two-dimensional difference fluorescence gel electrophoresis to verify the scale-up of a non-affinity-based downstream process for isolation of a therapeutic recombinant antibody. Electrophoresis 31:1862–1872

    Article  CAS  PubMed  Google Scholar 

  54. Hogwood CE, Tait AS, Koloteva-Levine N, Bracewell DG, Smales CM (2013) The dynamics of the CHO host cell protein profile during clarification and protein A capture in a platform antibody purification process. Biotechnol Bioeng 110:240–251

    Article  CAS  PubMed  Google Scholar 

  55. Bailey-Kellogg C, Gutiérrez AH, Moise L, Terry F, Martin WD, De Groot AS (2014) CHOPPI: a web tool for the analysis of immunogenicity risk from host cell proteins in CHO-based protein production. Biotechnol Bioeng 111:2170–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hogwood CE, Bracewell DG, Smales CM (2014) Measurement and control of host cell proteins (HCPs) in CHO cell bioprocesses. Curr Opin Biotechnol 30:153–160

    Article  CAS  PubMed  Google Scholar 

  57. Champion K, Madden H, Dougherty J, Shacter E (2005) Defining your product profile and maintaining control over it, part 2. Bioprocess Int 3:52–57

    CAS  Google Scholar 

  58. Levy NE, Valente KN, Lee KH, Lenhoff AM (2016) Host cell protein impurities in chromatographic polishing steps for monoclonal antibody purification. Biotechnol Bioeng 113:1260–1272

    Article  CAS  PubMed  Google Scholar 

  59. Jin M, Szapiel N, Zhang J, Hickey J, Ghose S (2010) Profiling of host cell proteins by two-dimensional difference gel electrophoresis (2D-DIGE): implications for downstream process development. Biotechnol Bioeng 105:306–316

    Article  CAS  PubMed  Google Scholar 

  60. Tait AS, Hogwood CE, Smales CM, Bracewell DG (2012) Host cell protein dynamics in the supernatant of a mAb producing CHO cell line. Biotechnol Bioeng 109:971–982

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Meleady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Meleady, P. (2018). Two-Dimensional Gel Electrophoresis and 2D-DIGE. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 1664. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7268-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7268-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7267-8

  • Online ISBN: 978-1-4939-7268-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics