Skip to main content

Four-Channel Super-Resolution Imaging by 3-D Structured Illumination

  • Protocol
Book cover Super-Resolution Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1663))

Abstract

Multichannel imaging is used as a readout of relative localization of two or more components and is often the first step in investigating functional ensembles in cells. However, the localization volume of diffraction-limited light microscopy (approx. 200 nm by 500 nm) can accommodate hundred of proteins, calling for increased resolution for these types of analyses. Here, we present a protocol for 4-channel imaging using structured illumination microscopy (SIM), which increases resolution by a factor of two. We use adherent, fixed cells to identify the localization of adhesion proteins using immunofluorescence and fluorescent proteins. We discuss how labeling with the necessary brightness is achieved and how data has to be processed for colocalization analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

3D–SIM:

Three-dimensional structured illumination microscopy

FA:

Focal adhesion

FP:

Fluorescent protein

GFP:

Green fluorescent protein

PALM:

Photo activation localization microscopy

STED:

Stimulated emission depletion

STORM:

Stochastic optical reconstruction microscopy

References

  1. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed Central  Google Scholar 

  2. Lidke DS, Lidke KA (2012) Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures. J Cell Sci 125:2571–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  CAS  PubMed  Google Scholar 

  4. Heintzmann R (2006) Structured illumination methods. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, New York, NY, pp 265–277

    Chapter  Google Scholar 

  5. Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burgert A, Letschert S, Doose S, Sauer M (2015) Artifacts in single-molecule localization microscopy. Histochem Cell Biol 144:123–131

    Article  CAS  PubMed  Google Scholar 

  7. Smeets D, Neumann J, Schermelleh L (2014) Application of three-dimensional structured illumination microscopy in cell biology – pitfalls and practical considerations. In: Fornasiero E, Rizzoli S (eds) Super-resolution microscopy techniques in the neurosciences, neuromethods, vol 86. Springer, New Yor, NY, pp 167–188

    Chapter  Google Scholar 

  8. Rottner K, Krause M, Gimona M, Small J V, Wehland J (2001) Zyxin is not colocalized with vasodilator-stimulated phosphoprotein (VASP) at lamellipodial tips and exhibits different dynamics to vinculin, paxillin, and VASP in focal adhesions. Mol Biol Cell 12:3103–3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hubner B, Cremer T, Neumann J (2013) Correlative microscopy of individual cells: sequential application of microscopic systems with increasing resolution to study the nuclear landscape. Methods Mol Biol 1042:299–336

    Article  PubMed  Google Scholar 

  10. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  CAS  PubMed  Google Scholar 

  11. Cranfill PJ, Sell BR, Baird MA, Allen JR, Lavagnino Z, de Gruiter HM, Kremers GJ, Davidson MW, Ustione A, Piston DW (2016) Quantitative assessment of fluorescent proteins. Nat Methods 13:557–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Staudt T, Lang MC, Medda R, Engelhardt J, Hell SW (2007) 2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech 70:1–9

    Article  CAS  PubMed  Google Scholar 

  13. Engel U (2014) Structured illumination superresolution imaging of the cytoskeleton. Methods Cell Biol 123:315–333

    Article  PubMed  Google Scholar 

  14. Case LB, Waterman CM (2015) Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol 17:955–963

    Article  CAS  PubMed  Google Scholar 

  15. Crawford AW, Beckerle MC (1991) Purification and characterization of zyxin, an 82,000-dalton component of adherens junctions. J Biol Chem 266:5847–5853

    CAS  PubMed  Google Scholar 

  16. Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15:397–410

    Article  CAS  PubMed  Google Scholar 

  17. Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9:582–584

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to Tim Mitchison and Matthias Krause for BS-C1 cell and the zyxin plasmid, respectively and Kees van der Oord and Pablo Hernandez Varas at Nikon BV for discussions on 3D-SIM technology. I want to thank all the users of the Nikon Imaging Center at the University of Heidelberg, who helped in improving our SIM routines, especially Diana Rüthnick for testing FPs and reading the manuscript. This work was supported by the CellNetworks Excellence Cluster and the SFB 873.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Engel, U. (2017). Four-Channel Super-Resolution Imaging by 3-D Structured Illumination. In: Erfle, H. (eds) Super-Resolution Microscopy. Methods in Molecular Biology, vol 1663. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7265-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7265-4_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7264-7

  • Online ISBN: 978-1-4939-7265-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics