Skip to main content

Measuring Nanometer Distances Between Fluorescent Labels Step-by-Step

  • Protocol
Book cover Super-Resolution Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1663))

Abstract

Super-resolution fluorescence microscopy methods are increasingly applied to study the structure of biological molecules within their natural context or at biomaterial interfaces. We here provide a protocol for Single-molecule High-Resolution Imaging with Photobleaching (SHRImP) that can be used to obtain information about the conformation of large proteins or other macromolecules at the single-molecule level. This procedure requires site-specific protein labeling with fluorescent dyes, immobilization and sample preparation, optimization of imaging buffer composition and microscope settings, and acquisition of short time-lapse movies that capture the stepwise bleaching behavior of individual molecules. We then describe a method for reliably determining the relative positions of labels from bleaching movies using the free image processing package Fiji (ImageJ) with the help of auxiliary macros that are provided as Supplementary Material. The presented approach allows for measuring intramolecular distance distributions in the range of a few to hundreds of nanometers and can be applied to a wide variety of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon MP, Ha T, Selvin PR (2004) Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci U S A 101(17):6462–6465. doi:10.1073/pnas.0401638101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516. doi:10.1038/Nmeth.1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen JR, Ross ST, Davidson MW (2013) Single molecule localization microscopy for superresolution. J Opt 15(9). doi:10.1088/2040-8978/15/9/094001

  4. Churchman LS, Okten Z, Rock RS, Dawson JF, Spudich JA (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci U S A 102(5):1419–1423. doi:10.1073/pnas.0409487102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Margadant F, Chew LL, Hu X, Yu H, Bate N, Zhang X, Sheetz M (2011) Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol 9(12). doi:10.1371/journal.pbio.1001223

  6. Michalet X, Lacoste TD, Weiss S (2001) Ultrahigh-resolution colocalization of spectrally separable point-like fluorescent probes. Methods 25(1):87–102. doi:10.1006/meth.2001.1218

    Article  CAS  PubMed  Google Scholar 

  7. Pertsinidis A, Zhang YX, Chu S (2010) Subnanometre single-molecule localization, registration and distance measurements. Nature 466(7306):647–U611. doi:10.1038/Nature09163

    Article  CAS  PubMed  Google Scholar 

  8. Schoen I (2014) Localization precision in stepwise photobleaching experiments. Biophys J 107(9):2122–2129. doi:10.1016/j.bpj.2014.09.035

    Article  CAS  PubMed Central  Google Scholar 

  9. Huang B, Jones SA, Brandenburg B, Zhuang XW (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5(12):1047–1052. doi:10.1038/nmeth.1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Churchman LS, Flyvbjerg H, Spudich JA (2006) A non-Gaussian distribution quantifies distances measured with fluorescence localization techniques. Biophys J 90(2):668–671. doi:10.1529/biophysj.105.065599

    Article  CAS  PubMed  Google Scholar 

  11. Qu XH, Wu D, Mets L, Scherer NF (2004) Nanometer-localized multiple single-molecule fluorescence microscopy. Proc Natl Acad Sci U S A 101(31):11298–11303. doi:10.1073/pnas.0402155101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmied JJ, Gietl A, Holzmeister P, Forthmann C, Steinhauer C, Dammeyer T, Tinnefeld P (2012) Fluorescence and super-resolution standards based on DNA origami. Nat Methods 9(12):1133–1134. doi:10.1038/nmeth.2254

    Article  CAS  PubMed  Google Scholar 

  13. Steinhauer C, Jungmann R, Sobey TL, Simmel FC, Tinnefeld P (2009) DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew Chem Int Ed 48(47):8870–8873. doi:10.1002/anie.200903308

    Article  CAS  Google Scholar 

  14. Kufer SK, Strackharn M, Stahl SW, Gumpp H, Puchner EM, Gaub HE (2009) Optically monitoring the mechanical assembly of single molecules. Nat Nanotechnol 4(1):45–49. doi:10.1038/Nnano.2008.333

    Article  CAS  PubMed  Google Scholar 

  15. Muls B, Uji-i H, Melnikov S, Moussa A, Verheijen W, Soumillion JP, Josemon J, Mullen K, Hofkens J (2005) Direct measurement of the end-to-end distance of individual polyfluorene polymer chains. ChemPhysChem 6(11):2286–2294. doi:10.1002/cphc.200500235

    Article  CAS  PubMed  Google Scholar 

  16. Aoki H, Mori K, Takahashi T, Ito S (2013) Quantitative analysis of end-to-end distance of single polymer chain in ultra-thin film by super-resolution fluorescence imaging. Chem Phys 419:54–58. doi:10.1016/j.chemphys.2012.12.026

    Article  CAS  Google Scholar 

  17. Klotzsch E, Schoen I, Ries J, Renn A, Sandoghdar V, Vogel V (2014) Conformational distribution of surface-adsorbed fibronectin molecules explored by single molecule localization microscopy. Biomater Sci 2:883–892. doi:10.1039/c3bm60262a

    Article  CAS  Google Scholar 

  18. Balci H, Ha T, Sweeney HL, Selvin PR (2005) Interhead distance measurements in myosin VI via SHRImP support a simplified hand-over-hand model. Biophys J 89(1):413–417. doi:10.1529/biophysj.105.060608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gruszka DT, Whelan F, Farrance OE, Fung HKH, Paci E, Jeffries CM, Svergun DI, Baldock C, Baumann CG, Brockwell DJ, Potts JR, Clarke J (2015) Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein. Nat Commun 6:–7271. doi:10.1038/Ncomms8271

  20. Needham SR, Hirsch M, Rolfe DJ, Clarke DT, Zanetti-Domingues LC, Wareham R, Martin-Fernandez ML (2013) Measuring EGFR separations on cells with similar to 10 nm resolution via fluorophore localization imaging with photobleaching. PLoS One 8(5). doi:10.1371/journal.pone.0062331

  21. Früh SM, Schoen I, Ries J, Vogel V (2015) Molecular architecture of native fibronectin fibrils. Nat Commun 6:7275. doi:10.1038/Ncomms8275

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/Nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  23. Früh SM, Spycher PR, Mitsi M, Burkhardt MA, Vogel V, Schoen I (2014) Functional modification of fibronectin by N-terminal FXIIIa-mediated transamidation. Chembiochem 15(10):1481–1486. doi:10.1002/cbic.201402099

    Article  PubMed  Google Scholar 

  24. Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443(7109):355–358. doi:10.1038/nature05135

    Article  CAS  PubMed  Google Scholar 

  25. Plant LD, Xiong DZ, Dai H, Goldstein SAN (2014) Individual I-Ks channels at the surface of mammalian cells contain two KCNE1 accessory subunits. Proc Natl Acad Sci U S A 111(14):E1438–E1446. doi:10.1073/pnas.1323548111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4(4):319–321. doi:10.1038/Nmeth1024

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hines KE (2013) Inferring subunit stoichiometry from single molecule photobleaching. J Gen Physiol 141(6):737–746. doi:10.1085/jgp.201310988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stephanopoulos N, Francis MB (2011) Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7(12):876–884. doi:10.1038/Nchembio.720

    Article  CAS  PubMed  Google Scholar 

  29. van de Linde S, Sauer M (2014) How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chem Soc Rev 43(4):1076–1087. doi:10.1039/c3cs60195a

    Article  PubMed  Google Scholar 

  30. Zheng QS, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC (2014) Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 43(4):1044–1056. doi:10.1039/c3cs60237k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shi XH, Lim J, Ha T (2010) Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe. Anal Chem 82(14):6132–6138. doi:10.1021/ac1008749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783. doi:10.1016/S0006-3495(02)75618-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingmar Schoen .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 16.1

SHRImP_Macros (AS 140,674 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Früh, S.M., Schoen, I. (2017). Measuring Nanometer Distances Between Fluorescent Labels Step-by-Step. In: Erfle, H. (eds) Super-Resolution Microscopy. Methods in Molecular Biology, vol 1663. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7265-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7265-4_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7264-7

  • Online ISBN: 978-1-4939-7265-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics