Skip to main content

Bioinformatics Analysis of Protein Secretion in Plants

  • Protocol
  • First Online:
Plant Protein Secretion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1662))

Abstract

In sessile plants, the dynamic protein secretion pathways orchestrate the cellular responses to internal signals and external environmental changes in almost every aspect of plant developmental events. The cohort of plant proteins, secreted from the plant cells into the extracellular matrix, has been annotated as plant secretome. Therefore, the identification and characterization of secreted proteins will discover novel secretory potentials and establish the functional connection between cellular protein secretion and plant physiological phenomena. Noteworthy, an increasing number of bioinformatics databases and tools have been developed for computational predictions on either secreted proteins or secretory pathways. This chapter summarizes current accessible databases and tools for protein secretion analysis in Arabidopsis thaliana and higher plants, and provides feasible methodologies for bioinformatics analysis of secretome studies for the plant research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colman A (1991) An overview of conventional and novel routes of protein secretion. Biochem Soc Trans 19(2):249–252

    Article  CAS  PubMed  Google Scholar 

  2. Viotti C (2016) ER to Golgi-dependent protein secretion: the conventional pathway. Methods Mol Biol 1459:3–29

    Article  PubMed  Google Scholar 

  3. Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10(2):148–155

    Article  CAS  PubMed  Google Scholar 

  4. Ding Y, Robinson DG, Jiang L (2014) Unconventional protein secretion (UPS) pathways in plants. Curr Opin Cell Biol 29:107–115

    Article  CAS  PubMed  Google Scholar 

  5. Davis DJ, Kang B, Heringer AS et al (2016) Unconventional protein secretion in plants. Methods Mol Biol 1459:47–63

    Article  PubMed  Google Scholar 

  6. Robinson DG, Ding Y, Jiang L (2016) Unconventional protein secretion in plants: a criticalassessment. Protoplasma 253(1):31–43

    Article  CAS  PubMed  Google Scholar 

  7. Lonsdale A, Davis MJ, Doblin MS et al (2016) Better than nothing? Limitations of the prediction tool SecretomeP in the search for leaderless secretory proteins (LSPs) in plants. Front Plant Sci 7

    Google Scholar 

  8. Henry VJ, Bandrowski AE, Pepin AS et al (2014) OMICtools: an informative directory for multi-omic data analysis. Database (Oxford) 2014:bau069. doi:10.1093/database/bau069

    Article  Google Scholar 

  9. Pundir S, Martin MJ, O'Donovan C et al (2016) UniProt tools. Curr Protoc Bioinformatics 53:1.29.1–1.2915

    Article  Google Scholar 

  10. NCBI Resource Coordinators (2016) Database resources of the National Center for biotechnology information. Nucleic Acids Res 44(D1):D7–19

    Article  Google Scholar 

  11. Goujon M, McWilliam H, Li W et al (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38(Web Server):W695–W699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kinjo AR, Suzuki H, Yamashita R et al (2012) Protein data Bank Japan (PDBj): maintaining a structural data archive and resource description framework format. Nucleic Acids Res 40(Database issue):D453–D460

    Article  CAS  PubMed  Google Scholar 

  13. Sun Q, Zybailov B, Majeran W et al (2009) PPDB, the plant Proteomics database at Cornell. Nucleic Acids Res 37(Database issue):D969–D974

    Article  CAS  PubMed  Google Scholar 

  14. Lamesch P, Berardini TZ, Li D et al (2012) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40(Database issue):D1202–D1210

    Article  CAS  PubMed  Google Scholar 

  15. Petersen TN, Brunak S, von Heijne G et al (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  16. Emanuelsson O, Brunak S, von Heijne G et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971

    Article  CAS  PubMed  Google Scholar 

  17. Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res 35(Web Server issue):W429–W432

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frank K, Sippl MJ (2008) High-performance signal peptide prediction based on sequence alignment techniques. Bioinformatics 24(19):2172–2176

    Article  CAS  PubMed  Google Scholar 

  19. Lease KA, Walker JC (2006) The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol 142(3):831–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bruley C, Dupierris V, Salvi D et al (2012) AT_CHLORO: a chloroplast protein database dedicated to sub-plastidial localization. Front Plant Sci 3:205

    Article  PubMed  PubMed Central  Google Scholar 

  21. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8(5):978–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hooper CM, Castleden IR, Aryamanesh N et al (2016) Finding the subcellular location of barley, wheat, Rice and maize proteins: the compendium of crop proteins with annotated locations (cropPAL). Plant Cell Physiol 57(1):e9

    Article  PubMed  Google Scholar 

  23. Saravanan V, Thanga Velan Lakshmi P (2015) Dualpred: a webserver for predicting plant proteins dual-targeted to chloroplast and mitochondria using split protein-relatedness-measure feature. Curr Bioinforma 10(3):323–331

    Article  CAS  Google Scholar 

  24. ZC W, Xiao X, Chou KC (2011) iLoc-plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Mol BioSyst 7(12):3287–3297

    Article  Google Scholar 

  25. Rastogi S, Rost B (2011) LocDB: experimental annotations of localization for Homo sapiens and Arabidopsis thaliana. Nucleic Acids Res 39(Database issue):D230–D234

    Article  CAS  PubMed  Google Scholar 

  26. Goldberg T, Hecht M, Hamp T et al (2014) LocTree3 prediction of localization. Nucleic Acids Res 42(web server issue):W350–W355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blum T, Briesemeister S, Kohlbacher O (2009) MultiLoc2: integrating phylogeny and Gene ontology terms improves subcellular protein localization prediction. BMC Bioinformatics 10(1):1

    Article  Google Scholar 

  28. Chou K, Shen H (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5(6):e11335

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chou KC, Shen HB (2008) Cell-PLoc: a package of web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3(2):153–162

    Article  CAS  PubMed  Google Scholar 

  30. Lum G, Meinken J, Orr J et al (2014) PlantSecKB: the plant secretome and subcellular proteome knowledgebase. Comput Mol Biol 4(4)

    Google Scholar 

  31. Kleffmann T, Hirsch-Hoffmann M, Gruissem W et al (2006) Plprot: a comprehensive proteome database for different plastid types. Plant Cell Physiol 47(3):432–436

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Zhang Z, Mei Q et al (2013) PSI: a comprehensive and integrative approach for accurate plant subcellular localization prediction. PLoS One 8(10):e75826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaundal R, Raghava GP (2009) RSLpred: an integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information. Proteomics 9(9):2324–2342

    Article  CAS  PubMed  Google Scholar 

  34. Mooney C, Wang YH, Pollastri G (2011) SCLpred: protein subcellular localization prediction by N-to-1 neural networks. Bioinformatics 27(20):2812–2819

    Article  CAS  PubMed  Google Scholar 

  35. Briesemeister S, Blum T, Brady S et al (2009) SherLoc2: a high-accuracy hybrid method for predicting subcellular localization of proteins. J Proteome Res 8(11):5363–5366

    Article  CAS  PubMed  Google Scholar 

  36. Tanz SK, Castleden I, Hooper CM et al (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res 41(Database issue):D1185–D1191

    Article  CAS  PubMed  Google Scholar 

  37. Chi SM, Nam D (2012) WegoLoc: accurate prediction of protein subcellular localization using weighted gene ontology terms. Bioinformatics 28(7):1028–1030

    Article  CAS  PubMed  Google Scholar 

  38. Briesemeister S, Rahnenfuhrer J, Kohlbacher O (2010) YLoc--an interpretable web server for predicting subcellular localization. Nucleic Acids Res 38(web server issue):W497–W502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwacke R, Schneider A, van der Graaff E et al (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131(1):16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsaousis GN, Tsirigos KD, Andrianou XD et al (2010) ExTopoDB: a database of experimentally derived topological models of transmembrane proteins. Bioinformatics 26(19):2490–2492

    Article  CAS  PubMed  Google Scholar 

  41. Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9):849–850

    Article  CAS  PubMed  Google Scholar 

  42. Viklund H, Elofsson A (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24(15):1662–1668

    Article  CAS  PubMed  Google Scholar 

  43. Kozma D, Simon I, Tusnady GE (2013) PDBTM: protein data Bank of transmembrane proteins after 8 years. Nucleic Acids Res 41(Database issue):D524–D529

    Article  CAS  PubMed  Google Scholar 

  44. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32(Web Server):W321–W326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14(4):378–379

    Article  CAS  PubMed  Google Scholar 

  46. Chen Y, Yu P, Luo J et al (2003) Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 14(12):859–865

    Article  CAS  PubMed  Google Scholar 

  47. Hofmann K, Stoffel W (1993) TMbase-A database of membrane spanning protein segments. Biol Chem Hoppe Seyler 374(166)

    Google Scholar 

  48. Tusnady GE, Kalmar L, Hegyi H et al (2008) TOPDOM: database of domains and motifs with conservative location in transmembrane proteins. Bioinformatics 24(12):1469–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to thank Hong Kong RCG-GRF Grant (No. CUHK14104716) and The Chinese University of Hong Kong Research Committee Direct Grant (No.4053143) to L.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chen, L. (2017). Bioinformatics Analysis of Protein Secretion in Plants. In: Jiang, L. (eds) Plant Protein Secretion. Methods in Molecular Biology, vol 1662. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7262-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7262-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7261-6

  • Online ISBN: 978-1-4939-7262-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics