Skip to main content

Modification of Selenoprotein mRNAs by Cap Tri-methylation

  • Protocol
  • First Online:
Selenoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1661))

Abstract

Several selenoprotein mRNAs undergo 5′ cap maturation events whereby their classical monomethylated m7G cap becomes trimethylated (m3 2,2,7G) by the trimethylguanosine synthase 1 (Tgs1). Here, we describe immunoprecipitation methods for the detection of endogenous m3 2,2,7G-capped selenoprotein mRNAs from total cell extracts or after polysome fractionation of cytoplasmic extracts. We have also developed a method for the in vitro cap hypermethylation of selenoprotein mRNA transcripts using purified Tgs1 enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allmang C, Wurth L, Krol A (2009) The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta 1790:1415–1423

    Article  CAS  PubMed  Google Scholar 

  2. Boulon S, Marmier-Gourrier N, Pradet-Balade B et al (2008) The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol 180:579–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bulteau A, Chavatte L (2015) Update on selenoprotein biosynthesis, Antioxidants & redox signaling. 23:775–94

    Google Scholar 

  4. Cléry A, Bourguignon-Igel V, Allmang C et al (2007) An improved definition of the RNA-binding specificity of SECIS-binding protein 2, an essential component of the selenocysteine incorporation machinery. Nucleic Acids Res 35:1868–1884

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wurth L, Gribling-Burrer AS, Verheggen C et al (2014) Hypermethylated capped selenoprotein mRNAs in mammals. Nucleic Acids Res 42:8663–8677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Topisirovic I, Svitkin YV, Sonenberg N et al (2011) Cap and cap-binding proteins in the control of gene expression, Wiley interdisciplinary reviews. RNA 2:277–298

    CAS  PubMed  Google Scholar 

  7. Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136:763–776

    Article  CAS  PubMed  Google Scholar 

  8. Kohler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8:761–773

    Article  PubMed  Google Scholar 

  9. Fortes P, Inada T, Preiss T et al (2000) The yeast nuclear cap binding complex can interact with translation factor eIF4G and mediate translation initiation. Mol Cell 6:191–196

    Article  CAS  PubMed  Google Scholar 

  10. Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2:237–246

    Article  CAS  PubMed  Google Scholar 

  11. Izaurralde E, Lewis J, Gamberi C et al (1995) A cap-binding protein complex mediating U snRNA export. Nature 376:709–712

    Article  CAS  PubMed  Google Scholar 

  12. Shatkin AJ (1976) Capping of eucaryotic mRNAs. Cell 9:645–653

    Article  CAS  PubMed  Google Scholar 

  13. Luhrmann R, Appel B, Bringmann P et al (1982) Isolation and characterization of rabbit anti-m3 2,2,7G antibodies. Nucleic Acids Res 10:7103–7113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tycowski KT, Aab A, Steitz JA (2004) Guide RNAs with 5′ caps and novel box C/D snoRNA-like domains for modification of snRNAs in metazoa. Curr Biol 14:1985–1995

    Article  CAS  PubMed  Google Scholar 

  15. Hausmann S, Zheng S, Costanzo M et al (2008) Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways. J Biol Chem 283:31706–31718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Girard C, Verheggen C, Neel H et al (2008) Characterization of a short isoform of human Tgs1 hypermethylase associating with small nucleolar ribonucleoprotein core proteins and produced by limited proteolytic processing. J Biol Chem 283:2060–2069

    Article  CAS  PubMed  Google Scholar 

  17. Monecke T, Dickmanns A, Ficner R (2009) Structural basis for m(7)G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1. Nucleic Acids Res 37:3865–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Monecke T, Dickmanns A, Strasser A et al (2009) Structure analysis of the conserved methyltransferase domain of human trimethylguanosine synthase TGS1. Acta Crystallographica Section D 65:332–338

    Article  CAS  Google Scholar 

  19. Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1:302–307

    Article  CAS  PubMed  Google Scholar 

  20. Göbel U, Maas R, Clad A (1987) Quantitative electroelution of oligonucleotides and large DNA fragments from gels and purification by electrodialysis. J Biochem Biophys Methods 14:245–260

    Article  PubMed  Google Scholar 

  21. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611 LP–611622

    Article  Google Scholar 

Download references

Acknowledgments

We thank Thomas Monecke and Ralf Ficner for the gift of pGEX-6P hTgs1618-853 plasmid, Rémy Bordonné for the gift of pGEX-sTgs1577-851 plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Allmang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gribling-Burrer, AS., Eriani, G., Allmang, C. (2018). Modification of Selenoprotein mRNAs by Cap Tri-methylation. In: Chavatte, L. (eds) Selenoproteins. Methods in Molecular Biology, vol 1661. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7258-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7258-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7257-9

  • Online ISBN: 978-1-4939-7258-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics