Skip to main content

Specific Chemical Approaches for Studying Mammalian Ribosomes Complexed with Ligands Involved in Selenoprotein Synthesis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1661))

Abstract

Chemical approaches are very powerful tools for investigating the molecular structure and architecture of large ribonucleoprotein complexes involving ribosomes and other components of the translation system. Application of RNA nucleotide-specific and cross-linking reagents of a broad specificity range allows the researcher to obtain information on the sites of ligand binding to the ribosome and to each other as well as on the RNA rearrangements caused by the binding. Here, we describe specific chemical approaches including chemical probing and site-directed or bifunctional reagent-mediated cross-linking, which have been used for exploring the mechanism of selenocysteine insertion into a polypeptide chain by mammalian ribosomes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Papp LV, Lu J, Holgrem A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    Article  CAS  PubMed  Google Scholar 

  2. Lescure A, Rederstorff M, Krol A, Guicheney P, Allamand V (2009) Selenoprotein function and muscle disease. Biochim Biophys Acta 90:1569–1574

    Article  Google Scholar 

  3. Berry MJ, Banu L, Chen Y, Mandel S, Kieffer J, Harney J, Larsen P (1991) Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353:273–276

    Article  CAS  PubMed  Google Scholar 

  4. Fagegaltier D, Hubert N, Yamada K, Mizutani T, Carbon P, Krol A (2000) Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J 19:4796–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tujebajeva RM, Copeland PR, XM X, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ (2000) Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep 1:158–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM (2000) A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J 19:306–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allmang C, Wurth L, Krol A (2009) The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta 1790:1415–1423

    Article  CAS  PubMed  Google Scholar 

  8. Bulteau AL, Chavatte L (2015) Update on selenoprotein biosynthesis. Antioxid Redox Signal 23:775–794

    Article  CAS  PubMed  Google Scholar 

  9. Chavatte L, Brown BA, Driscoll DM (2005) Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat Struct Mol Biol 12:408–416

    Article  CAS  PubMed  Google Scholar 

  10. Miniard AC, Middleton LM, Budiman ME, Gerber CA, Driscoll DM (2010) Nucleolin binds to a subset of selenoproteins mRNAs and regulates their expression. Nucleic Acids Res 38:4807–4820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Budiman ME, Bubenik JL, Miniard AC, Middleton LM, Gerber CA, Cash A, Driscoll DM (2009) Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation. Mol Cell 35:479–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Copeland PR, Driscoll DM (1999) Purification, redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis. J Biol Chem 274:25447–25454

    Article  CAS  PubMed  Google Scholar 

  13. Kossinova OA, Malygin AA, Krol A, Karpova GG (2013) A novel insight into the mechanism of mammalian selenoprotein synthesis. RNA 19:1147–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caban K, Copeland PR (2012) Selenocysteine insertion sequence binding protein 2 alters conformational dynamics of residues involved in tRNA accommodation in 80S ribosomes. J Biol Chem 287:10664–10673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kossinova OA, Malygin AA, Krol A, Karpova GG (2014) The SBP2 protein central to selenoprotein synthesis contacts the human ribosome at expansion segment 7L of the 28S rRNA. RNA 20:1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anger A, Armache JP, Berninghausen O, Habeck M, Subklewe M, Wilson D, Beckman R (2013) Structures of the human and Drosophila 80S ribosome. Nature 497:80–85

    Article  CAS  PubMed  Google Scholar 

  17. Yanshina DD, Bulygin KN, Malygin AA, Karpova GG (2015) Hydroxylated histidine of human ribosomal protein uL2 is involved in maintaining the local structure of 28S rRNA in the ribosomal peptidyl transferase center. FEBS J 282:1554–1566

    Article  CAS  PubMed  Google Scholar 

  18. Tullius TD, Dombroski BA, Churchill ME, Kam L (1987) Hydroxyl radical footprinting: a high-resolution method for mapping protein–DNA contacts. Methods Enzymol 155:537–558

    Article  CAS  PubMed  Google Scholar 

  19. Kao C, Zheng M, Rüdisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ terminus of RNAs transcribed by T7 RNA polymerase. RNA 5:1268–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wichlacz A, Legiewicz M, Ciesiolka J (2004) Generating in vitro transcripts with homogenous 3′ ends using trans-acting antigenomic delta ribozyme. Nucleic Acids Res 32:e39

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dereuil YL, Expert-Bezançon A, Favre A (1991) Conformation and structural fluctuations of a 218 nucleotides long rRNA fragment: 4-thiouridine as an intrinsic photolabelling probe. Nucleic Acids Res 19:3653–3660

    Article  Google Scholar 

  22. Frelander MJ, Turunen JJ (2005) RNA ligation using T4 DNA ligase. In: Hartmann RK, Bindereif A, Schön A, Westhof E (eds) Handbook of RNA biochemistry. Wiley, Hoboken, NJ, pp 36–53. ISBN 3-527-30826-1

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the ARCUS and Supramolecular Chemistry programs (to G.K. and A.K.), the CNRS Laboratoire International Associé LIA NUCPROT (to A.K.), and the Russian Foundation for Basic Research (grant 12- 04-93111-CNRSL_a to G.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Karpova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kossinova, O., Malygin, A., Krol, A., Karpova, G. (2018). Specific Chemical Approaches for Studying Mammalian Ribosomes Complexed with Ligands Involved in Selenoprotein Synthesis. In: Chavatte, L. (eds) Selenoproteins. Methods in Molecular Biology, vol 1661. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7258-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7258-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7257-9

  • Online ISBN: 978-1-4939-7258-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics