Skip to main content

Overexpression of Recombinant Selenoproteins in E. coli

  • Protocol
  • First Online:
Selenoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1661))

Abstract

Expression of selenoproteins necessitates a process of decoding of a UGA codon from termination of translation to insertion of selenocysteine. The mechanisms of this process pose major challenges with regards to recombinant selenoprotein production in E. coli, which however can be overcome especially if the Sec residue is located close to the C-terminal end, as is the case for several naturally found selenoproteins. This chapter summarizes a method to achieve such a production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castellano S, Gladyshev VN, Guigo R, Berry MJ (2008) SelenoDB 1.0: a database of selenoprotein genes, proteins and SECIS elements. Nucleic Acids Res 36:D332–D338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  3. Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Rep 5:538–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN (2007) Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol 8:R198

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta 1790:1424–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taskov K, Chapple C, Kryukov GV, Castellano S, Lobanov AV, Korotkov KV, Guigo R, Gladyshev VN (2005) Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an animal genome? Nucleic Acids Res 33:2227–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y, Fomenko DE, Gladyshev VN (2005) The microbial selenoproteome of the Sargasso Sea. Genome Biol 6:R37

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brocker MJ, Ho JM, Church GM, Soll D, O'Donoghue P (2014) Recoding the genetic code with selenocysteine. Angew Chem Int Ed Engl 53:319–323

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yoshizawa S, Böck A (2009) The many levels of control on bacterial selenoprotein synthesis. Biochim Biophys Acta 1790:1404–1414

    Article  CAS  PubMed  Google Scholar 

  10. Gursinsky T, Grobe D, Schierhorn A, Jager J, Andreesen JR, Sohling B (2008) Factors and selenocysteine insertion sequence requirements for the synthesis of selenoproteins from a gram-positive anaerobe in Escherichia coli. Appl Environ Microbiol 74:1385–1393

    Article  CAS  PubMed  Google Scholar 

  11. Hatfield DL, Carlson BA, Xu XM, Mix H, Gladyshev VN (2006) Selenocysteine incorporation machinery and the role of selenoproteins in development and health. Prog Nucleic Acid Res Mol Biol 81:97–142

    Article  CAS  PubMed  Google Scholar 

  12. Gladyshev VN, Kryukov GV (2001) Evolution of selenocysteine-containing proteins: significance of identification and functional characterization of selenoproteins. Biofactors 14:87–92

    Article  CAS  PubMed  Google Scholar 

  13. Böck A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5:515–520

    Article  PubMed  Google Scholar 

  14. Hondal RJ (2009) Using chemical approaches to study selenoproteins-focus on thioredoxin reductases. Biochim Biophys Acta 1790:1501–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miller C, Brocker MJ, Prat L, Ip K, Chirathivat N, Feiock A, Veszpremi M, Soll D (2015) A synthetic tRNA for EF-Tu mediated selenocysteine incorporation in vivo and in vitro. FEBS Lett 589:2194–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haruna K, Alkazemi MH, Liu Y, Soll D, Englert M (2014) Engineering the elongation factor Tu for efficient selenoprotein synthesis. Nucleic Acids Res 42:9976–9983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aldag C, Brocker MJ, Hohn MJ, Prat L, Hammond G, Plummer A, Soll D (2013) Rewiring translation for elongation factor Tu-dependent selenocysteine incorporation. Angew Chem Int Ed Engl 52:1441–1445

    Article  CAS  PubMed  Google Scholar 

  18. Xu J, Eriksson SE, Cebula M, Sandalova T, Hedstrom E, Pader I, Cheng Q, Myers CR, Antholine WE, Nagy P, Hellman U, Selivanova G, Lindqvist Y, Arner ES (2015) The conserved Trp114 residue of thioredoxin reductase 1 has a redox sensor-like function triggering oligomerization and crosslinking upon oxidative stress related to cell death. Cell Death Dis 6:e1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng Q, Lu L, Grafstrom J, Olofsson MH, Thorell JO, Samen E, Johansson K, Ahlzen HS, Stone-Elander S, Linder S, Arner ES (2012) Combining 11C.-AnxA5 PET imaging with serum biomarkers for improved detection in live mice of modest cell death in human solid tumor xenografts. PLoS One 7:e42151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng Q, Lu L, Grafstrom J, Olofsson MH, Thorell JO, Samen E, Johansson K, Ahlzen HS, Linder S, Arner ES, Stone-Elander S (2012) Site-specifically 11C-labeled Sel-tagged annexin A5 and a size-matched control for dynamic in vivo PET imaging of protein distribution in tissues prior to and after induced cell death. Biochim Biophys Acta 1830:2562–2573

    Article  Google Scholar 

  21. Cheng Q, Stone-Elander S, Arnér ESJ (2006) Tagging recombinant proteins with a Sel-tag for purification, labeling with electrophilic compounds or radiolabeling with carbon-11. Nat Protoc 1:604–613

    Article  CAS  PubMed  Google Scholar 

  22. Cheng Q, Johansson L, Thorell JO, Fredriksson A, Samen E, Stone-Elander S, Arner ES (2006) Selenolthiol and dithiol C-terminal tetrapeptide motifs for one-step purification and labeling of recombinant proteins produced in E. coli. Chembiochem 7:1976–1981

    Article  CAS  PubMed  Google Scholar 

  23. Johansson L, Chen C, Thorell JO, Fredriksson A, Stone-Elander S, Gafvelin G, Arner ES (2004) Exploiting the 21st amino acid-purifying and labeling proteins by selenolate targeting. Nat Methods (1):61–66

    Google Scholar 

  24. Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, Williams CH Jr, Schirmer RH, Arnér ESJ (2003) Active sites of thioredoxin reductases — why selenoproteins? Proc Natl Acad Sci U S A 100:12618–12623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arnér ESJ, Sarioglu H, Lottspeich F, Holmgren A, Böck A (1999) High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes. J. Mol. Biol 292:1003–1016

    Article  PubMed  Google Scholar 

  26. Rengby O, Johansson L, Carlson LA, Serini E, Vlamis-Gardikas A, KĂ¥rsnäs P, ArnĂ©r ESJ (2004) Assessment of production conditions for efficient use of Escherichia coli in high-yield heterologous recombinant Selenoprotein synthesis. Appl Environ Microbiol 70:5159–5167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arnér ESJ (2002) Recombinant expression of mammalian selenocysteine-containing thioredoxin reductase and other selenoproteins in Escherichia coli. Methods Enzymol 347:226–235

    Article  PubMed  Google Scholar 

  28. Chen NY, Zhang JJ, Paulus H (1989) Chromosomal location of the Bacillus Subtilis aspartokinase II gene and nucleotide sequence of the adjacent genes homologous to uvrC and trx of Escherichia coli. J Gen Microbiol

    Google Scholar 

  29. Jiang Z, Arnér ESJ, Mu Y, Johansson L, Shi J, Zhao S, Liu S, Wang R, Zhang T, Yan G, Liu J, Shen J, Luo G (2004) Expression of selenocysteine-containing glutathione S-transferase in Escherichia coli. Biochem Biophys Res Commun 321:94–101

    Article  CAS  PubMed  Google Scholar 

  30. Wallberg H, Grafstrom J, Cheng Q, Lu L, Martinsson Ahlzen HS, Samen E, Thorell JO, Johansson K, Dunas F, Olofsson MH, Stone-Elander S, Arner ES, Stahl S (2012) HER2-positive tumors imaged within 1 hour using a site-specifically 11C-labeled Sel-tagged affibody molecule. J Nucl Med 53:1446–1453

    Article  PubMed  Google Scholar 

  31. Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. MĂ¼ller S, Heider J, Böck A (1997) The path of unspecific incorporation of selenium in Escherichia coli. Arch Microbiol 168:421–427

    Article  PubMed  Google Scholar 

  33. Cheng Q, Sandalova T, Lindqvist Y, Arnér ESJ (2009) Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. J Biol Chem 284:3998–4008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding to ESJA from The Swedish Cancer Society, The Swedish Research Council, Swedish Foundation for Strategic Research, Knut and Alice Wallenberg Foundation, and Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias S. J. Arnér .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Cheng, Q., Arnér, E.S.J. (2018). Overexpression of Recombinant Selenoproteins in E. coli . In: Chavatte, L. (eds) Selenoproteins. Methods in Molecular Biology, vol 1661. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7258-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7258-6_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7257-9

  • Online ISBN: 978-1-4939-7258-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics