Skip to main content

SECISearch3 and Seblastian: In-Silico Tools to Predict SECIS Elements and Selenoproteins

  • Protocol
  • First Online:
Selenoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1661))

Abstract

The computational identification of selenoprotein genes is complicated by the dual meaning of the UGA codon as stop and selenocysteine. SECIS elements are RNA structures essential for selenocysteine incorporation, which have been used as markers for selenoprotein genes in many bioinformatics studies. The most widely used tool for eukaryotic SECIS finding has been recently improved to its third generation, SECISearch3. This program is also a component of Seblastian, a pipeline for the identification of selenoprotein genes that employs SECIS finding as the first step. This chapter constitutes a practical guide to use SECISearch3 and Seblastian, which can be run via webservers at http://seblastian.crg.eu/ or http://gladyshevlab.org/SelenoproteinPredictionServer/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777. doi:10.1152/physrev.00039.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berry MJ, Banu L, Chen Y et al (1991) Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353:273–276

    Article  CAS  PubMed  Google Scholar 

  3. Berry MJ, Banu L, Harney JW, Larsen PR (1993) Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J 12:3315–3322

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hubert N, Walczak R, Sturchler C et al (1996) RNAs mediating cotranslational insertion of selenocysteine in eukaryotic selenoproteins. Biochimie 78:590–596

    Article  CAS  PubMed  Google Scholar 

  5. Krol A (2002) Evolutionarily different RNA motifs and RNA-protein complexes to achieve selenoprotein synthesis. Biochimie 84:765–774

    Article  CAS  PubMed  Google Scholar 

  6. Mariotti M, Lobanov A V, Manta B et al (2016) Lokiarchaeota marks the transition between the Archaeal and eukaryotic Selenocysteine encoding systems. Mol Biol Evol 33:2441–2453. doi:10.1093/molbev/msw122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mariotti M, Santesmasses D, Capella-Gutierrez S et al (2015) Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization. Genome Res 25:1256–1267. doi:10.1101/gr.190538.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Howard MT, Moyle MW, Aggarwal G et al (2007) A recoding element that stimulates decoding of UGA codons by Sec tRNA [Ser] Sec. RNA 13:912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Howard MT, Aggarwal G, Anderson CB et al (2005) Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons. EMBO J 24:1596–1607. doi:10.1038/sj.emboj.7600642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Driscoll DM, Chavatte L (2004) Finding needles in a haystack. In silico identification of eukaryotic selenoprotein genes. EMBO Rep 5:140–141. doi:10.1038/sj.embor.7400080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mariotti M, Guigó R (2010) Selenoprofiles: profile-based scanning of eukaryotic genome sequences for selenoprotein genes. Bioinformatics 26:2656–2663. doi:10.1093/bioinformatics/btq516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kryukov GV, Kryukov VM, Gladyshev VN (1999) New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements. J Biol Chem 274:33888

    Article  CAS  PubMed  Google Scholar 

  13. Lambert A, Lescure A, Gautheret D (2002) A survey of metazoan selenocysteine insertion sequences. Biochimie 84(9):953

    Article  CAS  PubMed  Google Scholar 

  14. Lescure A, Gautheret D, Carbon P, Krol A (1999) Novel Selenoproteins identified in Silico andin vivo by using a conserved RNA structural motif. J Biol Chem 274:38147

    Article  CAS  PubMed  Google Scholar 

  15. Novoselov SV, Rao M, Onoshko NV et al (2002) Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 21:3681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castellano S, Morozova N, Morey M et al (2001) In silico identification of novel selenoproteins in the Drosophila melanogaster genome. EMBO Rep 2:697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martin-Romero FJ, Kryukov GV, Lobanov AV et al (2001) Selenium metabolism in Drosophila. J Biol Chem 276:29798

    Article  CAS  PubMed  Google Scholar 

  18. Castellano S, Novoselov S V, Kryukov G V et al (2004) Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution. EMBO Rep 5:71–77. doi:10.1038/sj.embor.7400036

    Article  CAS  PubMed  Google Scholar 

  19. Kryukov G, Gladyshev V (2000) Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues. Genes Cells 5:1049

    Article  CAS  PubMed  Google Scholar 

  20. Castellano S, Lobanov AV, Chapple C et al (2005) Diversity and functional plasticity of eukaryotic selenoproteins: identification and characterization of the SelJ family. Proc Natl Acad Sci U S A 102:16188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shchedrina V, Novoselov S, Malinouski MY, Gladyshev VN (2007) Identification and characterization of a selenoprotein family containing a diselenide bond in a redox motif. Proc Natl Acad Sci 104:13919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taskov K, Chapple C, Kryukov GV et al (2005) Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an animal genome? Nucleic Acids Res 33:2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lobanov AV, Gromer S, Salinas G, Gladyshev VN (2006) Selenium metabolism in Trypanosoma: characterization of selenoproteomes and identification of a Kinetoplastida-specific selenoprotein. Nucleic Acids Res 34:4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lobanov AV, Delgado C, Rahlfs S et al (2006) The plasmodium selenoproteome. Nucleic Acids Res 34:496. doi:10.1093/nar/gkj450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Novoselov S, Lobanov A, Hua D et al (2007) A highly efficient form of the selenocysteine insertion sequence element in protozoan parasites and its use in mammalian cells. Proc Natl Acad Sci U S A 104:7857–7862. doi:10.1073/pnas.0610683104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Novoselov SV, Hua D, Lobanov AV, Gladyshev VN (2006) Identification and characterization of Fep15, a new selenocysteine-containing member of the Sep15 protein family. Biochem J 394:575. doi:10.1042/BJ20051569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang L, Ni J, Liu Q (2012) Evolution of selenoproteins in the metazoan. BMC Genomics 13:446. doi:10.1186/1471-2164-13-446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. da Silva MTA, Caldas VEA, Costa FC et al (2013) Selenocysteine biosynthesis and insertion machinery in Naegleria gruberi. Mol Biochem Parasitol 188:87–90. doi:10.1016/j.molbiopara.2013.04.002

    Article  PubMed  Google Scholar 

  29. Chapple CE, Guigó R (2008) Relaxation of selective constraints causes independent selenoprotein extinction in insect genomes. PLoS One 3(8):e2968

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hofacker I, Fontana W, Stadler P et al (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188

    Article  CAS  Google Scholar 

  31. Zhang Y, Gladyshev VN (2005) An algorithm for identification of bacterial selenocysteine insertion sequence elements and selenoprotein genes. Bioinformatics 21:2580–2589. doi:10.1093/bioinformatics/bti400

    Article  CAS  PubMed  Google Scholar 

  32. Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Rep 5:538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kryukov GV, Castellano S, Novoselov SV et al (2003) Characterization of mammalian selenoproteomes. Science 300:1439

    Article  CAS  PubMed  Google Scholar 

  34. Mariotti M, Lobanov A V, Guigo R, Gladyshev VN (2013) SECISearch3 and Seblastian: new tools for prediction of SECIS elements and selenoproteins. Nucleic Acids Res 41:e149. doi:10.1093/nar/gkt550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337. doi:10.1093/bioinformatics/btp157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eddy SR Cove. http://eddylab.org/software.html

  37. Grundner-Culemann E, Martin GW, Harney JW, Berry MJ (1999) Two distinct SECIS structures capable of directing selenocysteine incorporation in eukaryotes. RNA 5:625–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lorenz R, Bernhart SH, Höner Z, Siederdissen C et al (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26. doi:10.1186/1748-7188-6-26

    Article  PubMed  PubMed Central  Google Scholar 

  39. Otero L, Romanelli-Cedrez L, Turanov AA et al (2014) Adjustments, extinction, and remains of selenocysteine incorporation machinery in the nematode lineage. RNA 20:1023–1034. doi:10.1261/rna.043877.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Otero L, Romanelli-Cedrez L, Turanov AA et al (2014) Erratum to: adjustments, extinction, and remains of selenocysteine incorporation machinery in the nematode lineage. RNA 20:1653

    Article  CAS  PubMed Central  Google Scholar 

  41. Chapple CE, Guigó R, Krol A (2009) SECISaln, a web-based tool for the creation of structure-based alignments of eukaryotic SECIS elements. Bioinformatics 25(5):674. doi:10.1093/bioinformatics/btp020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Altschul S, Madden T, Schaffer A et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Slater GSC, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31. doi:10.1186/1471-2105-6-31

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gladyshev VN, Arnér ES, Berry MJ et al (2016) Selenoprotein gene nomenclature. J Biol Chem. doi: 10.1074/jbc.M116.756155

    Google Scholar 

  45. Suzek BE, Wang Y, Huang H et al (2015) UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31:926–932. doi:10.1093/bioinformatics/btu739

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mariotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mariotti, M. (2018). SECISearch3 and Seblastian: In-Silico Tools to Predict SECIS Elements and Selenoproteins. In: Chavatte, L. (eds) Selenoproteins. Methods in Molecular Biology, vol 1661. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7258-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7258-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7257-9

  • Online ISBN: 978-1-4939-7258-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics