Polymer-Based Purification of Extracellular Vesicles

  • Peter N. Brown
  • Hang YinEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)


Lipid particles, including exosomes (extracellular vesicles [EVs]), are released from cells in vivo and in vitro. The contents of these EVs can be indicative of disease and therefore be utilized in diagnostic biophysical or biochemical assays. To make use of EVs in this way, methods for purification and quantification are required which vary depending on their particles origin and concentration. This chapter provides an overview of EV purification techniques and provides detailed instructions on the purification of EVs by polymer based precipitation and subsequent quantification. The subsequent quantification and characterization of these EVs also presents a challenge, as limited methods are capable of detecting EVs due to their small size.

Key words

Exosome production Extracellular vesicles Exosome purification Polymer based EV precipitation Electron microscopy Immunolabeling 



We thank the National Institutes of Health and Cancer Research UK for financial supports (NIH R01GM103843 and C596/A17096).


  1. 1.
    Kastelowitz N, Yin H (2014) EVs and microvesicles: identification and targeting by particle size and lipid chemical probes. ChemBioChem 15:923–928CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lässer C (2015) EVs in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 15:103–117CrossRefPubMedGoogle Scholar
  3. 3.
    Roma-Rodrigues C, Fernandes AR, Baptista PV (2014) Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. Biomed Res Int 2014:10CrossRefGoogle Scholar
  4. 4.
    Mathivanan S, Lim JWE, Tauro BJ, Ji H, Moritz RL, Simpson RJ (2010) Proteomics analysis of a33 immunoaffinity-purified EVs released from the human colon tumor cell line lim1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9:197–208CrossRefPubMedGoogle Scholar
  5. 5.
    Taylor DD, Shah S (2015) Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 87:3–10CrossRefPubMedGoogle Scholar
  6. 6.
    Lane RE, Korbie D, Anderson W, Vaidyanathan R, Trau M (2015) Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci Rep 5:7639CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Théry C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles 3:26913CrossRefPubMedGoogle Scholar
  8. 8.
    Christianson HC, Svensson KJ, van Kuppevelt TH, Li J-P, Belting M (2013) Cancer cell EVs depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci 110:17380–17385CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ (2013) Two distinct populations of EVs are released from lim1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics 12:587–598CrossRefPubMedGoogle Scholar
  10. 10.
    Buschow SI, van Balkom BWM, Aalberts M, Heck AJR, Wauben M, Stoorvogel W (2010) MHC class II-associated proteins in b-cell EVs and potential functional implications for exosome biogenesis. Immunol Cell Biol 88:851–856CrossRefPubMedGoogle Scholar
  11. 11.
    Jakobsen KR, Paulsen BS, Bæk R, Varming K, Sorensen BS, Jørgensen MM (2015) Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles 4:26659CrossRefPubMedGoogle Scholar
  12. 12.
    Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Hoen N-’t, EN PMG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:20360CrossRefGoogle Scholar
  13. 13.
    Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 3:23430CrossRefGoogle Scholar
  14. 14.
    György B, Módos K, Pállinger É, Pálóczi K, Pásztói M, Misják P, Deli MA, Sipos Á, Szalai A, Voszka I, Polgár A, Tóth K, Csete M, Nagy G, Gay S, Falus A, Kittel Á, Buzás EI (2011) Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117:e39–e48CrossRefPubMedGoogle Scholar
  15. 15.
    Hong P, Koza S, Bouvier ESP (2012) Size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Rel Technol 35:2923–2950Google Scholar
  16. 16.
    Théry C, Amigorena S, Raposo G, Clayton A (2001) Isolation and characterization of EVs from cell culture supernatants and biological fluids. In: Current protocols in cell biology. John Wiley & Sons, Inc., New York, NYGoogle Scholar
  17. 17.
    Lässer C, Eldh M, Lötvall J (2012) Isolation and characterization of rna-containing EVs. J Vis Exp 59:3037Google Scholar
  18. 18.
    Van Niel G, Mallegol J, Bevilacqua C, Candalh C, Brugière S, Tomaskovic-Crook E, Heath JK, Cerf-Bensussan N, Heyman M (2003) Intestinal epithelial EVs carry mhc class ii/peptides able to inform the immune system in mice. Gut 52:1690–1697CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, Dyrskjøt L, Ørntoft TF, Howard KA, Ostenfeld MS (2014) Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles 3:25011CrossRefPubMedGoogle Scholar
  20. 20.
    Momen-Heravi F, Balaj L, Alian S, Trachtenberg AJ, Hochberg FH, Skog J, Kuo WP (2012) Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol 3:162PubMedPubMedCentralGoogle Scholar
  21. 21.
    Taylor D, Zacharias W, Gercel-Taylor C (2011) Exosome isolation for proteomic analyses and RNA profiling. Humana Press, Serum/plasma proteomicsCrossRefGoogle Scholar
  22. 22.
    Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, Colone M, Tatti M, Sargiacomo M, Fais S (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284:34211–34222CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Drug Discovery ProgrammeBeatson Institute for Cancer ResearchGlasgowUK
  2. 2.Department of Chemistry & BiochemistryUniversity of Colorado BoulderBoulderUSA
  3. 3.BioFrontiers InstituteUniversity of Colorado BoulderBoulderUSA

Personalised recommendations