Skip to main content

Filter-Based Extracellular Vesicle mRNA Isolation and High-Throughput Gene Expression Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1660))

Abstract

Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated particles with different ranges of size, density, and cargo. Various types of RNA including mRNA are enclosed within EVs and can serve as novel biomarkers for disease detection and patient management. Ultracentrifugation, precipitation , antibody-based capture and filter-based methods are available as in-house laboratory procedures or commercially available kits to isolate EVs. Here, we describe a filter-based method for EV mRNA isolation that is designed for parallel processing of large sample numbers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Miranda KC, Bond DT, McKee M, Skog J, Paunescu TG, Da Silva N et al (2010) Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 78(2):191–199. doi:10.1038/ki.2010.106

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3, Unit 3.22

    Google Scholar 

  3. Rider MA, Hurwitz SN, Meckes Jr DG (2016) ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep 6:23978. doi:10.1038/srep23978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grant R, Ansa-Addo E, Stratton D, Antwi-Baffour S, Jorfi S et al (2011) A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma. J Immunol Methods 371(1-2):143–151

    Article  CAS  PubMed  Google Scholar 

  5. Aoki J, Ohashi K, Mitsuhashi M, Murakami T, Oakes M, Kobayashi T, Doki N, Kakihana K, Sakamaki H (2014) Posttransplantation bone marrow assessment by quantifying hematopoietic cell-derived mRNAs in plasma exosomes/microvesicles. Clin Chem 60(4):675–682

    Article  CAS  PubMed  Google Scholar 

  6. Murakami T, Oakes M, Ogura M, Tovar V, Yamamoto C, Mitsuhashi M (2014) Development of glomerulus-, tubule-, and collecting duct-specific mRNA assay in human urinary exosomes and microvesicles. PLoS One 9(10):e109074. doi:10.1371/journal.pone.0109074

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miranda KC, Bond DT, Levin JZ, Adiconis X, Sivachenko A et al (2014) Massively parallel sequencing of human urinary exosome/microvesicle RNA reveals a predominance of non-coding RNA. PLoS One 9(5):e96094. doi:10.1371/journal.pone.0096094

    Article  PubMed  PubMed Central  Google Scholar 

  8. Enderle D, Spiel A, Coticchia CM, Berghoff E, Mueller R, Schumberger M et al (2015) Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One 10(8):e0136133. doi:10.1371/journal.pone.0136133

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oosthuyzen W, Sime NEL, Ivy JR, Turtle EJ, Street JM, Pound J et al (2013) Quantification of human urinary exosomes by nanoparticle tracking analysis. J Physiol 591(23):5833–5842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zubiri I, Posada-Ayala M, Sanz-Maroto A, Calvo E, Martin-Lorenzo M, Gonzalez-Calero L, de la Cuesta F et al (2014) Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis. J Proteomics 96:92–102

    Article  CAS  PubMed  Google Scholar 

  11. Tang MK, Wong AS (2015) Exosomes: emerging biomarkers and targets for ovarian cancer. Cancer Lett 367(1):26–33

    Article  CAS  PubMed  Google Scholar 

  12. Tkach M, Clotilde T (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy M. Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yamamoto, C.M., Murakami, T., Ng, SW. (2017). Filter-Based Extracellular Vesicle mRNA Isolation and High-Throughput Gene Expression Analysis. In: Kuo, W., Jia, S. (eds) Extracellular Vesicles. Methods in Molecular Biology, vol 1660. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7253-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7253-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7251-7

  • Online ISBN: 978-1-4939-7253-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics