Therapeutic Applications of Extracellular Vesicles: Perspectives from Newborn Medicine

  • Gareth R. Willis
  • Stella Kourembanas
  • S. Alex MitsialisEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)


With the advancements in antenatal steroid therapies and surfactant replacement, current clinical practices in neonatal intensive care units allow the survival of infants at very low gestational age. Despite these advances, there continues to be significant morbidity associated with extreme preterm birth that includes both short-term and long-term cardiorespiratory impairment. With no effective single therapy in preventing or treating developmental lung injuries, the need for new tools to treat and reduce risk of complications associated with extreme preterm birth is urgent. Stem cell-based therapies, in particular therapies utilizing mesenchymal stem (stromal) cells (MSCs), have shown promise in a number of animal models of lung pathologies relevant to neonatology. Recent studies in this field have consolidated the concept that the therapeutic mechanism of MSC action is paracrine, and this led to wide acceptance of the concept that the delivery of the MSC secretome rather than live cells may provide an alternative therapeutic approach for many complex diseases. Here, we summarize the significance and application of cell-free based therapies in preclinical models of neonatal lung injury. We emphasize the development of extracellular vesicle (EV)-based therapeutics and focus on the challenges that remain to be addressed before their application to clinical practice.

Key words

Extracellular vesicles (EVs) Exosomes Therapeutics Newborn medicine Bronchopulmonary dysplasia (BPD) Mesenchymal stem cells (MSCs) Exosomes Preclinical 


  1. 1.
    Borghesi A, Cova C, Gazzolo D, Stronati M (2013) Stem cell therapy for neonatal diseases associated with preterm birth. J Clin Neonatol 2(1):1–7CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S et al (2015) Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 314(10):1039–1051CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mitsialis SA, Kourembanas S (2016) Stem cell–based therapies for the newborn lung and brain: possibilities and challenges. Semin Perinatol 40(3):138–151CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Baraldi E, Filippone M (2007) Chronic lung disease after premature birth. N Engl J Med 357(19):1946–1955CrossRefPubMedGoogle Scholar
  5. 5.
    Hilgendorff A, O’Reilly MA (2015) Bronchopulmonary dysplasia early changes leading to long-term consequences. Front Med 2:2CrossRefGoogle Scholar
  6. 6.
    Khemani E, McElhinney DB, Rhein L, Andrade O, Lacro RV, Thomas KC et al (2007) Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 120(6):1260–1269CrossRefPubMedGoogle Scholar
  7. 7.
    del Cerro MJ, Sabaté Rotés A, Cartón A, Deiros L, Bret M, Cordeiro M et al (2014) Pulmonary hypertension in bronchopulmonary dysplasia: clinical findings, cardiovascular anomalies and outcomes. Pediatr Pulmonol 49(1):49–59CrossRefPubMedGoogle Scholar
  8. 8.
    Borghesi A, Massa M, Campanelli R, Bollani L, Tzialla C, Figar TA et al (2009) Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med 180(6):540–546CrossRefPubMedGoogle Scholar
  9. 9.
    Baker CD, Balasubramaniam V, Mourani PM, Sontag MK, Black CP, Ryan SL et al (2012) Cord blood angiogenic progenitor cells are decreased in bronchopulmonary dysplasia. Eur Respir J 40(6):1516–1522CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Titomanlio L, Kavelaars A, Dalous J, Mani S, El Ghouzzi V, Heijnen C et al (2011) Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol 70(5):698–712CrossRefPubMedGoogle Scholar
  11. 11.
    Verina T, Fatemi A, Johnston MV, Comi AM (2013) Pluripotent possibilities: human umbilical cord blood cell treatment after neonatal brain injury. Pediatr Neurol 48(5):346–354CrossRefPubMedGoogle Scholar
  12. 12.
    Chicha L, Smith T, Guzman R (2014) Stem cells for brain repair in neonatal hypoxia–ischemia. Childs Nerv Syst 30(1):37–46CrossRefPubMedGoogle Scholar
  13. 13.
    Gonzales-Portillo GS, Reyes S, Aguirre D, Pabon MM, Borlongan CV (2014) Stem cell therapy for neonatal hypoxic-ischemic encephalopathy. Front Neurol 5:147CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bennet L, Tan S, Van den Heuij L, Derrick M, Groenendaal F, van Bel F et al (2012) Cell therapy for neonatal hypoxia–ischemia and cerebral palsy. Ann Neurol 71(5):589–600CrossRefPubMedGoogle Scholar
  15. 15.
    Baker CD, Seedorf GJ, Wisniewski BL, Black CP, Ryan SL, Balasubramaniam V et al (2013) Endothelial colony-forming cell conditioned media promote angiogenesis in vitro and prevent pulmonary hypertension in experimental bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 305(1):L73–L81CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77(3):577–588CrossRefPubMedGoogle Scholar
  17. 17.
    Hodges RJ, Jenkin G, Hooper SB, Allison B, Lim R, Dickinson H et al (2012) Human amnion epithelial cells reduce ventilation-induced preterm lung injury in fetal sheep. Am J Obstet Gynecol 206(5):448.e8–448.15CrossRefGoogle Scholar
  18. 18.
    Vosdoganes P, Hodges RJ, Lim R, Westover AJ, Acharya RY, Wallace EM et al (2011) Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep. Am J Obstet Gynecol 205(2):156.e26–156.e33CrossRefGoogle Scholar
  19. 19.
    Curley GF, Hayes M, Ansari B, Shaw G, Ryan A, Barry F et al (2012) Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax 67(6):496–501CrossRefPubMedGoogle Scholar
  20. 20.
    Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA et al (2009) Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 180(11):1122–1130CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M et al (2009) Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 180(11):1131–1142CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang X, Wang H, Shi Y, Peng W, Zhang S, Zhang W et al (2012) Role of bone marrow-derived mesenchymal stem cells in the prevention of hyperoxia-induced lung injury in newborn mice. Cell Biol Int 36(6):589–594CrossRefPubMedGoogle Scholar
  23. 23.
    Chimenti L, Luque T, Bonsignore MR, Ramírez J, Navajas D, Farré R (2012) Pre-treatment with mesenchymal stem cells reduces ventilator-induced lung injury. Eur Respir J 40(4):939–948CrossRefPubMedGoogle Scholar
  24. 24.
    Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA et al (2012) Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ 2(2):170–181CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pierro M, Ionescu L, Montemurro T, Vadivel A, Weissmann G, Oudit G et al (2013) Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax 68(5):475–484CrossRefPubMedGoogle Scholar
  26. 26.
    Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K et al (2012) Mitochondrial transfer from bone marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18(5):759–765CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA (2011) Concise review: Mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 29(6):913–919CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gu W, Song L, Li X-M, Wang D, Guo X-J, Xu W-G (2015) Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep 5:8733CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bonfield T, Sutton M, Lennon D, Caplan A (2015) Mesenchymal stem cells: new directions in treating asthma (THER2P.955). J Immunol 194(1):67.6Google Scholar
  31. 31.
    Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A et al (2015) Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates Aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med 4(11):1302–1316CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ringden O, Keating A (2011) Mesenchymal stromal cells as treatment for chronic GVHD. Bone Marrow Transplant 46(2):163–164CrossRefPubMedGoogle Scholar
  33. 33.
    Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI et al (2014) Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr 164(5):966–972.e6CrossRefPubMedGoogle Scholar
  34. 34.
    Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 15 Feb 2013. doi: 10.3402/jev.v2i0.20389
  35. 35.
    van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705CrossRefPubMedGoogle Scholar
  36. 36.
    Kourembanas S (2015) Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 77(1):13–27CrossRefPubMedGoogle Scholar
  37. 37.
    Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30(1):255–289CrossRefPubMedGoogle Scholar
  38. 38.
    Abels ER, Breakefield XO (2016) Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 36(3):301–312CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    El Andaloussi S, Mager I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357CrossRefGoogle Scholar
  40. 40.
    Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sdrimas K, Kourembanas S (2014) MSC microvesicles for the treatment of lung disease: a new paradigm for cell-free therapy. Antioxid Redox Signal 21(13):1905–1915CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066CrossRefPubMedGoogle Scholar
  43. 43.
    Mulcahy LA, Pink RC, Carter DRF (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3. doi: 10.3402/jev.v3.24641
  44. 44.
    Benameur T, Soleti R, Porro C, Andriantsitohaina R, Martínez MC (2010) Microparticles carrying sonic hedgehog favor neovascularization through the activation of nitric oxide pathway in mice. PLoS One 5(9):e12688CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659CrossRefPubMedGoogle Scholar
  46. 46.
    Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M et al (2010) Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 51(8):2105–2120CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang J, Li S, Li L, Li M, Guo C, Yao J et al (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13(1):17–24CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stoorvogel W (2012) Functional transfer of microRNA by exosomes. Blood 119(3):646–648CrossRefPubMedGoogle Scholar
  49. 49.
    Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30(7):1556–1564CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Xiang M-X, He A-N, Wang J-A, Gui C (2009) Protective paracrine effect of mesenchymal stem cells on cardiomyocytes. J Zhejiang Univ Sci B 10(8):619–624CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    D’Angio CT, Maniscalco WM (2006) Bronchopulmonary dysplasia in preterm infants: pathophysiology and management strategies. Paediatr Drugs 6(5):303–330CrossRefGoogle Scholar
  52. 52.
    Cho D-I, Kim MR, Jeong H-Y, Jeong HC, Jeong MH, Yoon SH et al (2014) Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 46:e70CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee J-H et al (2012) Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 302(9):L829–L837CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA et al (2008) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1(2):129–137CrossRefGoogle Scholar
  55. 55.
    Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang B, Yin Y, Lai RC, Tan SS, Choo ABH, Lim SK (2013) Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 23(11):1233–1244CrossRefGoogle Scholar
  57. 57.
    Zhang G, Wang D, Miao S, Zou X, Liu G, Zhu Y (2016) Extracellular vesicles derived from mesenchymal stromal cells may possess increased therapeutic potential for acute kidney injury compared with conditioned medium in rodent models: a meta-analysis. Exp Ther Med 11(4):1519–1525CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Xin H, Li Y, Chopp M (2014) Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 8:377CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR et al (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 8(4):970–973Google Scholar
  60. 60.
    Griffiths MJD, Bonnet D, Janes SM (2005) Stem cells of the alveolar epithelium. Lancet 366(9481):249–260CrossRefPubMedGoogle Scholar
  61. 61.
    Romanov YA, Darevskaya AN, Merzlikina NV, Buravkova LB (2005) Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Bull Exp Biol Med 140(1):138–143CrossRefPubMedGoogle Scholar
  62. 62.
    Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT (2014) Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 12:8CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21(1):105–110CrossRefPubMedGoogle Scholar
  64. 64.
    Secco M, Zucconi E, Vieira NM, Fogaça LLQ, Cerqueira A, Carvalho MDF et al (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26(1):146–150CrossRefPubMedGoogle Scholar
  65. 65.
    Musina RA, Bekchanova ES, Sukhikh GT (2005) Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med 139(4):504–509CrossRefPubMedGoogle Scholar
  66. 66.
    Chen J-Y, Mou X-Z, Du X-C, Xiang C (2015) Comparative analysis of biological characteristics of adult mesenchymal stem cells with different tissue origins. Asian Pac J Trop Med 8(9):739–746CrossRefPubMedGoogle Scholar
  67. 67.
    Jansen BJH, Gilissen C, Roelofs H, Schaap-Oziemlak A, Veltman JA, Raymakers RAP et al (2009) Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem Cells Dev 19(4):481–490CrossRefGoogle Scholar
  68. 68.
    Tsai M-S, Hwang S-M, Chen K-D, Lee Y-S, Hsu L-W, Chang Y-J et al (2007) Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells 25(10):2511–2523CrossRefPubMedGoogle Scholar
  69. 69.
    Foudah D, Redaelli S, Donzelli E, Bentivegna A, Miloso M, Dalprà L et al (2009) Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells. Chromosom Res 17(8):1025–1039CrossRefGoogle Scholar
  70. 70.
    Ren Z, Wang J, Zhu W, Guan Y, Zou C, Chen Z et al (2011) Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro. Exp Cell Res 317(20):2950–2957CrossRefPubMedGoogle Scholar
  71. 71.
    Harron DWG (2007) Technical requirements for registration of pharmaceuticals for human use: the ICH process. In: The textbook of pharmaceutical medicine. Blackwell Publishing Ltd, Oxford, pp 552–564Google Scholar
  72. 72.
    Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Chapter 3:Unit 3.22Google Scholar
  73. 73.
    Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2. doi: 10.3402/jev.v2i0.20360
  74. 74.
    Linares R, Tan S, Gounou C, Arraud N, Brisson AR (2015) High-speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles 4:29509CrossRefPubMedGoogle Scholar
  75. 75.
    Franquesa M, Hoogduijn MJ, Ripoll E, Luk F, Salih M, Betjes MGH et al (2014) Update on controls for isolation and quantification methodology of extracellular vesicles derived from adipose tissue mesenchymal stem cells. Front Immunol 5:525CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, Dyrskjøt L et al (2014) Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles 3:25011CrossRefPubMedGoogle Scholar
  77. 77.
    Iwai K, Minamisawa T, Suga K, Yajima Y, Shiba K (2016) Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles 5. doi: 10.3402/jev.v5.30829
  78. 78.
    Lozano-Ramos I, Bancu I, Oliveira-Tercero A, Armengol MP, Menezes-Neto A, Del Portillo HA et al (2015) Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples. J Extracell Vesicles 4:27369CrossRefPubMedGoogle Scholar
  79. 79.
    Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N et al (2015) Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 10(12):e0145686CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    György B, Hung ME, Breakefield XO, Leonard JN (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 55:439–464CrossRefPubMedGoogle Scholar
  81. 81.
    Beach A, Zhang H-G, Ratajczak MZ, Kakar SS (2014) Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res 7:14CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284(49):34211–34222CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Akers JC, Ramakrishnan V, Nolan JP, Duggan E, Fu C-C, Hochberg FH et al (2016) Comparative analysis of technologies for quantifying extracellular vesicles (EVs) in clinical cerebrospinal fluids (CSF). PLoS One 11(2):e0149866CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Maas SLN, de Vrij J, van der Vlist EJ, Geragousian B, van Bloois L, Mastrobattista E et al (2015) Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release 200:87–96CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L et al (2007) Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol 178(11):6867–6875CrossRefPubMedGoogle Scholar
  86. 86.
    Webber J, Clayton A (2013) How pure are your vesicles? J Extracell Vesicles 2. doi: 10.3402/jev.v2i0.19861
  87. 87.
    Batrakova EV, Kim MS (2016) Development and regulation of exosome-based therapy products. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(5):744–757CrossRefPubMedGoogle Scholar
  88. 88.
    Wiklander OPB, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G et al (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 4:26316CrossRefPubMedGoogle Scholar
  89. 89.
    Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T et al (2013) Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol 165(2):77–84CrossRefPubMedGoogle Scholar
  90. 90.
    Ohno S-i, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N et al (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191CrossRefPubMedGoogle Scholar
  91. 91.
    Downing NS, Aminawung JA, Shah ND, Krumholz HM, Ross JS (2014) CLinical trial evidence supporting FDA approval of novel therapeutic agents, 2005–2012. JAMA 311(4):368–377CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    U.S. Department of Health and Human Services Food and Drug Administration (1998) Guidance for industry: providing clinical evidence of effectiveness for human drug and biological productsGoogle Scholar
  93. 93.
    Jiao J, Milwid JM, Yarmush ML, Parekkadan B (2011) A mesenchymal stem cell potency assay. Methods Mol Biol 677:221–231CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Navabi H, Croston D, Hobot J, Clayton A, Zitvogel L, Jasani B et al (2005) Preparation of human ovarian cancer ascites-derived exosomes for a clinical trial. Blood Cell Mol Dis 35(2):149–152CrossRefGoogle Scholar
  95. 95.
    Lamparski HG, Metha-Damani A, Yao J-Y, Patel S, Hsu D-H, Ruegg C et al (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270(2):211–226CrossRefPubMedGoogle Scholar
  96. 96.
    de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G et al (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 1. doi: 10.3402/jev.v1i0.18396
  97. 97.
    Waszak P, Alphonse R, Vadivel A, Ionescu L, Eaton F, Thébaud B (2012) Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats. Stem Cells Dev 21(15):2789–2797CrossRefPubMedGoogle Scholar
  98. 98.
    Lai RC, Tan SS, Yeo RWY, Choo ABH, Reiner AT, Su Y et al (2016) MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J Extracell Vesicles 5:29828CrossRefPubMedGoogle Scholar
  99. 99.
    Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G et al (2015) Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J Extracell Vesicles 4:30087CrossRefPubMedGoogle Scholar
  100. 100.
    Lőrincz ÁM, Timár CI, Marosvári KA, Veres DS, Otrokocsi L, Kittel Á et al (2014) Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. J Extracell Vesicles 3. doi: 10.3402/jev.v3.25465
  101. 101.
    Sokolova V, Ludwig A-K, Hornung S, Rotan O, Horn PA, Epple M et al (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87(1):146–150CrossRefPubMedGoogle Scholar
  102. 102.
    Kalra H, Adda CG, Liem M, Ang C-S, Mechler A, Simpson RJ et al (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13(22):3354–3364CrossRefPubMedGoogle Scholar
  103. 103.
    Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC et al (2012) Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One 7(10):e47559CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Gareth R. Willis
    • 1
    • 2
  • Stella Kourembanas
    • 1
    • 2
  • S. Alex Mitsialis
    • 1
    • 2
    Email author
  1. 1.Division of Newborn Medicine & Department of MedicineBoston Children’s HospitalBostonUSA
  2. 2.Department of PediatricsHarvard Medical SchoolBostonUSA

Personalised recommendations