Production and Characterization of Extracellular Vesicles in Malaria

  • Smart Mbagwu
  • Michael Walch
  • Luis Filgueira
  • Pierre-Yves MantelEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)


Growing attention is drawn toward the role of extracellular vesicles (EVs) in infectious diseases. EVs, which are small vesicles released by cells, are involved in cellular communication, immune regulation, and pathogenesis. EVs act as messenger carrying functional cargoes, including RNA, DNA, lipids and proteins from a donor cell to regulate the function of a recipient cell. In malaria, EVs play a key role in regulating the progression from the blood to the transmission stage by promoting the switch between asexual and sexual stages that are taken up by mosquitoes. In addition to their role in parasite communication, EVs modulate the immune system and regulate endothelial cell function.

In this chapter, we describe protocols to isolate, purify and characterize EVs derived from Plasmodium falciparum infected red blood cell culture.

Key words

Malaria Extracellular vesicles Plasmodium falciparum Cellular communication 



This work was supported by grants from the Novartis Foundation for Medical-Biological Research, from the Research Pool and Fund of the University of Fribourg, as well as from the Gottfried and Julia Bangerter-Rhyner foundation (to M.W. and P.Y.M.).


  1. 1.
    Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 415(6872):673–679. doi: 10.1038/415673a CrossRefPubMedGoogle Scholar
  2. 2.
    WHO (2012) WHO Malaria Report 2012Google Scholar
  3. 3.
    Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5(9):722–735. doi: 10.1038/nri1686 CrossRefPubMedGoogle Scholar
  4. 4.
    Mantel PY, Marti M (2014) The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cell Microbiol 16(3):344–354. doi: 10.1111/cmi.12259 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nantakomol D, Dondorp AM, Krudsood S, Udomsangpetch R, Pattanapanyasat K, Combes V, Grau GE, White NJ, Viriyavejakul P, Day NP, Chotivanich K (2011) Circulating red cell-derived microparticles in human malaria. J Infect Dis 203(5):700–706. doi: 10.1093/infdis/jiq104 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pankoui Mfonkeu JB, Gouado I, Fotso Kuate H, Zambou O, Amvam Zollo PH, Grau GE, Combes V (2010) Elevated cell-specific microparticles are a biological marker for cerebral dysfunctions in human severe malaria. PLoS One 5(10):e13415. doi: 10.1371/journal.pone.0013415 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Combes V, Coltel N, Alibert M, van Eck M, Raymond C, Juhan-Vague I, Grau GE, Chimini G (2005) ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am J Pathol 166(1):295–302. doi: 10.1016/S0002-9440(10)62253-5 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Couper KN, Barnes T, Hafalla JC, Combes V, Ryffel B, Secher T, Grau GE, Riley EM, de Souza JB (2010) Parasite-derived plasma microparticles contribute significantly to malaria infection-induced inflammation through potent macrophage stimulation. PLoS Pathog 6(1):e1000744. doi: 10.1371/journal.ppat.1000744 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mantel PY, Hoang AN, Goldowitz I, Potashnikova D, Hamza B, Vorobjev I, Ghiran I, Toner M, Irimia D, Ivanov AR, Barteneva N, Marti M (2013) Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13(5):521–534. doi: 10.1016/j.chom.2013.04.009 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pelle KG, Ahouidi AD, Mantel PY (2013) Role of microvesicles in malaria infections. Med Sci 29(11):960–962. doi: 10.1051/medsci/20132911010 Google Scholar
  11. 11.
    Ankarklev J, Brancucci NM, Goldowitz I, Mantel PY, Marti M (2014) Sex: how malaria parasites get turned on. Curr Biol 24(9):R368–R370. doi: 10.1016/j.cub.2014.03.046 CrossRefPubMedGoogle Scholar
  12. 12.
    Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, Bursac D, Angrisano F, Gee M, Hill AF, Baum J, Cowman AF (2013) Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153(5):1120–1133. doi: 10.1016/j.cell.2013.04.029 CrossRefPubMedGoogle Scholar
  13. 13.
    Mantel PY, Hjelmqvist D, Walch M, Kharoubi-Hess S, Nilsson S, Ravel D, Ribeiro M, Grüring C, Ma S, Padmanabhan P, Trachtenberg AJ, Ankarklev J, Brancucci NM, Huttenhower C, Duraisingh MT, Ghiran I, Kuo WP, Filgueira L, Martinelli R, Marti M (2016) Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat Commun 7:12727CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Horowitz A, Riley EM (2013) Activation of human NK cells by Plasmodium-infected red blood cells. Methods Mol Biol 923:447–464. doi: 10.1007/978-1-62703-026-7_31 CrossRefPubMedGoogle Scholar
  15. 15.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008. doi: 10.1073/pnas.1019055108 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Smart Mbagwu
    • 1
  • Michael Walch
    • 1
  • Luis Filgueira
    • 1
  • Pierre-Yves Mantel
    • 1
    Email author
  1. 1.Department of Medicine, Unit of AnatomyUniversity of FribourgFribourgSwitzerland

Personalised recommendations