Skip to main content

Isolation of Extracellular Vesicles in Saliva Using Density Gradient Ultracentrifugation

  • Protocol
  • First Online:
Extracellular Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1660))

Abstract

This chapter describes a method for isolating human salivary extracellular vesicles (EVs) using density gradient ultracentrifugation. Standard protocols established for isolation of EVs from blood or a conditioned medium of cultured cells do not work for whole saliva, due to its viscosity. Therefore, procedures including a pretreatment step and utilizing iodixanol as a gradient material enable EVs to be concentrated to a 1.1 g/ml density. This protocol is compatible with both swing and angle rotors. By employing an angle rotor, which enables high g-force, the centrifugation time was reduced to 4 h from the 17 h required when using a swing rotor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    Article  CAS  PubMed  Google Scholar 

  2. Zonneveld MI, Brisson AR, van Herwijnen MJ, Tan S, van de Lest CH, Redegeld FA, Garssen J, Wauben MH, Nolte-'t Hoen EN (2014) Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. J Extracell Vesicles 3:24215

    Article  Google Scholar 

  3. Ronquist G, Hedstrom M (1977) Restoration of detergent-inactivated adenosine triphosphatase activity of human prostatic fluid with concanavalin A. Biochim Biophys Acta 483:483–486

    Article  CAS  PubMed  Google Scholar 

  4. Chiasserini D, van Weering JR, Piersma SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H, Jimenez CR (2014) Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset. J Proteome 106C:191–204

    Article  Google Scholar 

  5. Press JZ, Reyes M, Pitteri SJ, Pennil C, Garcia R, Goff BA, Hanash SM, Swisher EM (2012) Microparticles from ovarian carcinomas are shed into ascites and promote cell migration. Int J Gynecol Cancer 22:546–552

    Article  PubMed  Google Scholar 

  6. Roca E, Lacroix R, Judicone C, Laroumagne S, Robert S, Cointe S, Muller A, Kaspi E, Roll P, Brisson AR, Tantucci C, Astoul P, Dignat-George F (2016) Detection of EpCAM-positive microparticles in pleural fluid: a new approach to mini-invasively identify patients with malignant pleural effusions. Oncotarget 7:3357–3366

    Article  PubMed  Google Scholar 

  7. Torregrosa Paredes P, Esser J, Admyre C, Nord M, Rahman QK, Lukic A, Radmark O, Gronneberg R, Grunewald J, Eklund A, Scheynius A, Gabrielsson S (2012) Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy 67:911–919

    Article  CAS  PubMed  Google Scholar 

  8. Kang GY, Bang JY, Choi AJ, Yoon J, Lee WC, Choi S, Yoon S, Kim HC, Baek JH, Park HS, Lim HJ, Chung H (2014) Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration. J Proteome Res 13:581–595

    Article  CAS  PubMed  Google Scholar 

  9. Sinha A, Yadav AK, Chakraborty S, Kabra SK, Lodha R, Kumar M, Kulshreshtha A, Sethi T, Pandey R, Malik G, Laddha S, Mukhopadhyay A, Dash D, Ghosh B, Agrawal A (2013) Exosome-enclosed microRNAs in exhaled breath hold potential for biomarker discovery in patients with pulmonary diseases. J Allergy Clin Immunol 132:219–222

    Article  CAS  PubMed  Google Scholar 

  10. Wong DT (2006) Salivary diagnostics powered by nanotechnologies, proteomics and genomics. J Am Dent Assoc 137:313–321

    Article  CAS  PubMed  Google Scholar 

  11. Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C (2011) Diagnostic potential of saliva: current state and future applications. Clin Chem 57:675–687

    Article  CAS  PubMed  Google Scholar 

  12. Ogawa Y, Taketomi Y, Murakami M, Tsujimoto M, Yanoshita R (2013) Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biol Pharm Bull 36:66–75

    Article  CAS  PubMed  Google Scholar 

  13. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R, Vered M (2015) Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem 63:181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang J, Wei F, Schafer C, Wong DT (2014) Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva. PLoS One 9:e110641

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Chapter 3:Unit 3.22

    Google Scholar 

  16. Iwai K, Minamisawa T, Suga K, Yajima Y, Shiba K (2016) Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles 5:30829

    Article  PubMed  Google Scholar 

  17. Carr B, Hole P, Malloy A, Nelson P, Wright M, Smith J (2009) Applications of nanoparticle tracking analysis in nanoparticle research – a mini-review. Eur J Parenter Pharm Sci 14:45–50

    Google Scholar 

  18. Livshts MA, Khomyakova E, Evtushenko EG, Lazarev VN, Kulemin NA, Semina SE, Generozov EV, Govorun VM (2015) Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep 5:17319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:19671

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Project for Private Universities: Matching Fund Subsidy” from the Ministry of Education, Culture, Sports, Science, and Technology and by a grant from the Vehicle Racing Commemorative Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Shiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Iwai, K., Yamamoto, S., Yoshida, M., Shiba, K. (2017). Isolation of Extracellular Vesicles in Saliva Using Density Gradient Ultracentrifugation. In: Kuo, W., Jia, S. (eds) Extracellular Vesicles. Methods in Molecular Biology, vol 1660. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7253-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7253-1_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7251-7

  • Online ISBN: 978-1-4939-7253-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics