Advertisement

An Adaptable Polyethylene Glycol-Based Workflow for Proteomic Analysis of Extracellular Vesicles

  • Stephanie N. Hurwitz
  • David G. MeckesJr.Email author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)

Abstract

Extracellular vesicles (EVs), including exosomes are endocytically derived nanovesicles expelled from cells that contain molecular information in the form of lipids, proteins, and nucleic acids. Transfer of this information to other cells in local or distant microenvironments facilitates cell-to-cell communication. Importantly, diseased cells release exosomes containing specific cargo that may contribute to pathology and can be harnessed for diagnostic or prognostic use. The broad potential medical utility of exosomes has fueled rapidly expanding research on understanding the composition and functions of exosomes in normal and pathological conditions. Here, we provide a complete workflow for purifying exosome-sized vesicles from biological fluids for in-depth proteomic analyses. Moreover, this polyethylene glycol-based method is efficient, highly adaptable, and compatible with a variety of downstream applications.

Key words

Exosomes Microvesicles Extracellular vesicles Mass spectrometry Proteomics Polyethylene glycol Ultracentrifuge 

Notes

Acknowledgments

Special thanks to Mark Rider for the development of the ExtraPEG protocol used in the described methods, to Xia Liu for careful editing of the methods provided, and to Marius Kostelic for the acquisition of Coomassie-stained images. This work was supported by grants from the Florida Department of Health (6AZ11 and 4BB05) and the National Institutes of Health (CA204621 and CA188941) awarded to D.G.M.

References

  1. 1.
    Meckes DG, Raab-Traub N (2011) Microvesicles and viral infection. J Virol 85(24):12844–12854. doi: 10.1128/JVI.05853-11 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113(8):E968–E977. doi: 10.1073/pnas.1521230113 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Meckes DG, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N (2013) Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci U S A 110(31):E2925–E2933. doi: 10.1073/pnas.1303906110 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Meckes DG (2015) Exosomal communication goes viral. J Virol 89(10):5200–5203. doi: 10.1128/JVI.02470-14 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Meckes DG, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N (2010) Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A 107(47):20370–20375. doi: 10.1073/pnas.1014194107 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S (2015) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. doi: 10.1016/j.jmb.2015.09.019
  7. 7.
    Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9(21):4997–5000. doi: 10.1002/pmic.200900351 CrossRefPubMedGoogle Scholar
  8. 8.
    Simpson RJ, Kalra H, Mathivanan S (2012) ExoCarta as a resource for exosomal research. J Extracell Vesicles 1. doi: 10.3402/jev.v1i0.18374
  9. 9.
    Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Krämer-Albers EM, Lim SK, Llorente A, Lötvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-'t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sánchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vázquez J, Vidal M, Wauben MH, Yáñez-Mó M, Zoeller M, Mathivanan S (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10(12):e1001450. doi: 10.1371/journal.pbio.1001450 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22. doi: 10.1002/0471143030.cb0322s30
  11. 11.
    Abramowicz A, Widlak P, Pietrowska M (2016) Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Mol BioSyst 12(5):1407–1419. doi: 10.1039/c6mb00082g
  12. 12.
    Rider MA, Hurwitz SN, Meckes DG (2016) ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep 6:23978. doi: 10.1038/srep23978. http://www.nature.com/articles/srep23978#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Théry C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913CrossRefPubMedGoogle Scholar
  14. 14.
    Hurwitz SN, Conlon MM, Rider MA, Brownstein NC, Meckes DG (2016) Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J Extracell Vesicles 5:31295Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeUSA

Personalised recommendations