Rapid Isolation of Extracellular Vesicles from Blood Plasma with Size-Exclusion Chromatography Followed by Mass Spectrometry-Based Proteomic Profiling

  • Simion Kreimer
  • Alexander R. IvanovEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)


The presented procedure allows rapid isolation of extracellular vesicles (EVs) from plasma using size-exclusion chromatography (SEC). Additionally, an approach for reducing the lipid and salt content of the EV isolate in preparation for mass spectrometry (MS)-based proteomic analysis is presented. An example setup for proteomic profiling of the processed samples by nanoflow liquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) is also presented. Approximately 1000 protein groups in blood plasma-derived EVs can be identified and quantitated following this procedure and using the described instrumentation.

Key words

Extracellular vesicles EVs Microparticles Exosomes Proteomics Size-exclusion chromatography Mass spectrometry Nano-LC-MS Sample preparation Proteomic profiling 



This work was supported by the ASMS 2015 Research Award (ARI), NIH 1R01GM120272-01 (ARI), and the Dana-Farber Cancer Institute/Northeastern University Joint Seed Funding Program in Cancer Drug Development (ARI). The authors thank Dr. Ionita Ghiran (Beth Israel Deaconess Medical Center) for fruitful discussions and his assistance with blood collection.


  1. 1.
    Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913. doi: 10.3402/jev.v3.26913 CrossRefPubMedGoogle Scholar
  2. 2.
    Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2. doi: 10.3402/jev.v2i0.20389
  3. 3.
    Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR (2015) Mass spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res 14(6):2367–2384CrossRefPubMedGoogle Scholar
  4. 4.
    Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. doi: 10.1146/annurev-cellbio-101512-122326 CrossRefPubMedGoogle Scholar
  5. 5.
    Thery C (2015) Cancer: diagnosis by extracellular vesicles. Nature 523(7559):161–162. doi: 10.1038/nature14626 CrossRefPubMedGoogle Scholar
  6. 6.
    Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56(2):293–304. doi: 10.1016/j.ymeth.2012.01.002 CrossRefPubMedGoogle Scholar
  7. 7.
    Boing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 3. doi: 10.3402/jev.v3.23430
  8. 8.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917CrossRefPubMedGoogle Scholar
  9. 9.
    Cortes HJ, Pfeiffer CD, Richter BE, Stevens TS (1987) Porous ceramic bed supports for fused silica packed capillary columns used in liquid chromatography. J High Resol Chromatogr 10(8):446–448CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonUSA

Personalised recommendations