Skip to main content

In Vivo Tracking of Extracellular Vesicles in Mice Using Fusion Protein Comprising Lactadherin and Gaussia Luciferase

  • Protocol
  • First Online:
Extracellular Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1660))

Abstract

Extracellular vesicles (EVs) are cell-derived vesicles comprising a lipid bilayer and are found in body fluids, such as blood, sweat, and urine. As EVs, especially exosomes, function as endogenous intercellular delivery tools, their roles in various biological events have been extensively investigated. In addition, they are expected to become safe and effective drug delivery systems (DDS) because of their intrinsic nature. In the development of EV-based DDS, as well as in the investigation of the biological functions of EVs, it is important to analyze the in vivo behavior of EVs by tracking them. Therefore, we have developed a sensitive EV-labeling method to track EVs in vivo by designing a fusion protein comprising lactadherin (LA) (alias milk fat globule-EGF factor 8), a protein that binds to EV membranes through interaction with phosphatidylserine, and Gaussia luciferase (gLuc), a chemiluminescent protein. gLuc-LA-labeled EVs are easily obtained by transfecting EV-producing cells with a gLuc-LA-encoding plasmid vector. Here, we describe methods to label EVs with the fusion protein and to track the labeled EVs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yáñez-Mó M, Siljander PR, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. doi:10.3402/jev.v4.27066

    Article  PubMed  Google Scholar 

  2. Boukouris S, Mathivanan S (2015) Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl 9:358–367. doi:10.1002/prca.201400114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akers JC, Gonda D, Kim R et al (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro-Oncol 113:1–11. doi:10.1007/s11060-013-1084-8

    Article  Google Scholar 

  4. Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. doi:10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  5. Turpin D, Truchetet ME, Faustin B et al (2016) Role of extracellular vesicles in autoimmune diseases. Autoimmun Rev 15:174–183. doi:10.1016/j.autrev.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  6. Fernández-Messina L, Gutiérrez-Vázquez C, Rivas-García E et al (2015) Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell 107:61–77. doi:10.1111/boc.201400081

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miller IV, Grunewald TG (2015) Tumour-derived exosomes: tiny envelopes for big stories. Biol Cell 107:287–305. doi:10.1111/boc.201400095

    Article  CAS  PubMed  Google Scholar 

  8. Das S, Halushka MK (2015) Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol 24:199–206. doi:10.1016/j.carpath.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  9. Alenquer M, Amorim MJ (2015) Exosome biogenesis, regulation, and function in viral infection. Virus 7:5066–5083. doi:10.3390/v7092862

    Article  CAS  Google Scholar 

  10. Milbank E, Martinez MC, Andriantsitohaina R (2016) Extracellular vesicles: pharmacological modulators of the peripheral and central signals governing obesity. Pharmacol Ther 157:65–83. doi:10.1016/j.pharmthera.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  11. Porro C, Trotta T, Panaro MA (2015) Microvesicles in the brain: biomarker, messenger or mediator? J Neuroimmunol 288:70–78. doi:10.1016/j.jneuroim.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  12. Zhu YG, Feng XM, Abbott J et al (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32:116–125. doi:10.1002/stem.1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heldring N, Mäger I, Wood MJ et al (2015) Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther 26:506–517. doi:10.1089/hum.2015.072

    Article  CAS  PubMed  Google Scholar 

  14. Yuyama K, Sun H, Mitsutake S et al (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J Biol Chem 287:10977–10989. doi:10.1074/jbc.M111.324616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuyama K, Sun H, Sakai S et al (2014) Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J Biol Chem 289:24488–24498. doi:10.1074/jbc.M114.577213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hao S, Moyana T, Xiang J (2007) Review: cancer immunotherapy by exosome-based vaccines. Cancer Biother Radiopharm 22:692–703. doi:10.1089/cbr.2007.368-R

    Article  CAS  PubMed  Google Scholar 

  17. Pitt JM, Charrier M, Viaud S et al (2014) Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol 193:1006–1011. doi:10.4049/jimmunol.1400703

    Article  CAS  PubMed  Google Scholar 

  18. Vader P, Mol EA, Pasterkamp G et al (2016) Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 106:148–156. doi:10.1016/j.addr.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi Y, Nishikawa M, Shinotsuka H et al (2013) Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol 165:77–84. doi:10.1016/j.jbiotec.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  20. Imai T, Takahashi Y, Nishikawa M et al (2015) Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. J Extracell Vesicles 4:26238. doi:10.3402/jev.v4.26238

    Article  PubMed  Google Scholar 

  21. Yamashita T, Takahashi Y, Nishikawa M et al (2016) Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur J Pharm Biopharm 98:1–8. doi:10.1016/j.ejpb.2015.10.017

    Article  CAS  PubMed  Google Scholar 

  22. Morishita M, Takahashi Y, Nishikawa M et al (2015) Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. J Pharm Sci 104:705–713. doi:10.1002/jps.24251

    Article  CAS  PubMed  Google Scholar 

  23. Yeo RW, Lai RC, Zhang B et al (2013) Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev 65:336–341. doi:10.1016/j.addr.2012.07.001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Takahashi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Takahashi, Y., Nishikawa, M., Takakura, Y. (2017). In Vivo Tracking of Extracellular Vesicles in Mice Using Fusion Protein Comprising Lactadherin and Gaussia Luciferase. In: Kuo, W., Jia, S. (eds) Extracellular Vesicles. Methods in Molecular Biology, vol 1660. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7253-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7253-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7251-7

  • Online ISBN: 978-1-4939-7253-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics