Red Blood Cells: A Source of Extracellular Vesicles

  • Winston Patrick KuoEmail author
  • John C. Tigges
  • Vasilis Toxavidis
  • Ionita Ghiran
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)


During their lifetime, like all other cell types, red blood cells (RBCs) release both exosomes and plasma membrane derived EVs (ectosomes). RBC exosomes are formed only during the development of RBCs in bone marrow, and are released following the fusion of microvesicular bodies (MVB) with the plasma membrane. On the other hand, RBC EVs are generated during normal aging of RBCs in circulation by budding of the plasma membrane due to complement-mediated calcium influx, followed by vesicle shedding. This makes red blood cells and stored red cells a reliable source of EVs for basic and clinical research.

Key words

Red blood cells Extracellular vesicles Diagnostics Stored blood 


  1. 1.
    Burnouf T, Chou ML, Goubran H, Cognasse F, Garraud O, Seghatchian J (2015) An overview of the role of microparticles/microvesicles in blood components: are they clinically beneficial or harmful? Transfus Apher Sci 53(2):137–145. doi: 10.1016/j.transci.2015.10.010. PubMed PMID: 26596959CrossRefPubMedGoogle Scholar
  2. 2.
    Keuren JF, Magdeleyns EJ, Govers-Riemslag JW, Lindhout T, Curvers J (2006) Effects of storage-induced platelet microparticles on the initiation and propagation phase of blood coagulation. Br J Haematol 134(3):307–313. doi: 10.1111/j.1365-2141.2006.06167.x. PubMed PMID: 16848773CrossRefPubMedGoogle Scholar
  3. 3.
    Donadee C, Raat NJ, Kanias T, Tejero J, Lee JS, Kelley EE, Zhao X, Liu C, Reynolds H, Azarov I, Frizzell S, Meyer EM, Donnenberg AD, Qu L, Triulzi D, Kim-Shapiro DB, Gladwin MT (2011) Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation 124(4):465–476. doi: 10.1161/CIRCULATIONAHA.110.008698. PubMed PMID: 21747051; PMCID: PMC3891836CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tinmouth A, Chin-Yee I (2001) The clinical consequences of the red cell storage lesion. Transfus Med Rev 15(2):91–107. PubMed PMID: 11309731CrossRefPubMedGoogle Scholar
  5. 5.
    Chin-Yee I, Arya N, d'Almeida MS (1997) The red cell storage lesion and its implication for transfusion. Transfus Sci 18(3):447–458. doi: S095538869700043X [pii]. Epub 1997/08/05. PubMed PMID: 10175158CrossRefPubMedGoogle Scholar
  6. 6.
    Spiess BD (2007) Red cell transfusions and guidelines: a work in progress. Hematol Oncol Clin North Am 21(1):185–200. doi: 10.1016/j.hoc.2006.11.006. Epub 2007/01/30. S0889-8588(06)00190-0 [pii]. PubMed PMID: 17258127CrossRefPubMedGoogle Scholar
  7. 7.
    Solheim BG, Hess JR (2009) In: Simon TL, Snyder EI, Solheim BG, Strauss RG, Peride M (eds) Rossi's principles of transfusion medicine, 4th edn. Blackwell Publishing, New JerseyGoogle Scholar
  8. 8.
    Hess JR (2006) An update on solutions for red cell storage. Vox Sang 91(1):13–19. doi: 10.1111/j.1423-0410.2006.00778.x. Epub 2006/06/08. VOX778 [pii]. PubMed PMID: 16756596CrossRefPubMedGoogle Scholar
  9. 9.
    Gyongyossy-Issa MI, Weiss SL, Sowemimo-Coker SO, Garcez RB, Devine DV (2005) Prestorage leukoreduction and low-temperature filtration reduce hemolysis of stored red cell concentrates. Transfusion 45(1):90–96. doi: 10.1111/j.1537-2995.2005.04061.x. Epub 2005/01/14. TRF04061 [pii]. PubMed PMID: 15647023CrossRefPubMedGoogle Scholar
  10. 10.
    Yoshida T, AuBuchon JP, Tryzelaar L, Foster KY, Bitensky MW (2007) Extended storage of red blood cells under anaerobic conditions. Vox Sang 92(1):22–31. doi: 10.1111/j.1423-0410.2006.00860.x. Epub 2006/12/22. VOX860 [pii]. PubMed PMID: 17181587CrossRefPubMedGoogle Scholar
  11. 11.
    Yoshida T, AuBuchon JP, Dumont LJ, Gorham JD, Gifford SC, Foster KY, Bitensky MW (2008) The effects of additive solution pH and metabolic rejuvenation on anaerobic storage of red cells. Transfusion 48(10):2096–2105. doi: 10.1111/j.1537-2995.2008.01812.x. Epub 2008/07/18. TRF01812 [pii]. PubMed PMID: 18631166CrossRefPubMedGoogle Scholar
  12. 12.
    Pascual M, Lutz HU, Steiger G, Stammler P, Schifferli JA (1993) Release of vesicles enriched in complement receptor 1 from human erythrocytes. J Immunol 151(1):397–404. PubMed PMID: 8326133PubMedGoogle Scholar
  13. 13.
    Nelson RAJ (1953) The immune adherence phenomenon: an immunologically specfic reaction between microorganisms and erythrocytes leading to enhanced phagocytosis. Science 118:733–737CrossRefPubMedGoogle Scholar
  14. 14.
    Pilsczek FH, Nicholson-Weller A, Ghiran I (2005) Phagocytosis of Salmonella montevideo by human neutrophils: immune adherence increases phagocytosis, whereas the bacterial surface determines the route of intracellular processing. J Infect Dis 192(2):200–209. doi: 10.1086/430947. Epub 2005/06/18. JID31399 [pii]. PubMed PMID: 15962214CrossRefPubMedGoogle Scholar
  15. 15.
    Klickstein LB, Bartow TJ, Miletic B, Rabson LD, Smith JA, Fearon DT (1988) Identification of distinct C3b and C4b recognition sites in the human C3b/C4b receptor (CR1, CD35) by deletion mutagenesis. J Exp Med 168:1699–1717CrossRefPubMedGoogle Scholar
  16. 16.
    Krych M, Hourcade D, Atkinson JP (1991) Sites within the complement C3b/C4b receptor important for the specificity of ligand binding. Proc Natl Acad Sci U S A 88(10):4353–4357CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Makrides SC, Scesney SM, Ford PJ, Evans KS, Carson GR, Marsh HCJ (1992) Cell surface expression of the C3b/C4b receptor (CR1) protects Chinese hamster ovary cells from lysis by human complement. J Biol Chem 267:24754–24761PubMedGoogle Scholar
  18. 18.
    Klickstein LB, Barbashov S, Liu T, Jack RM, Nicholson-Weller A (1997) Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 7:345–355CrossRefPubMedGoogle Scholar
  19. 19.
    Tas SW, Klickstein LB, Nicholson-Weller A (1999) C1q and C4b are additive ligands for CR1 and mediate erythrocyte adhesion. J Immunol 163:5056–5063PubMedGoogle Scholar
  20. 20.
    Ghiran I, Barbashov SF, Klickstein LB, Tas SW, Jensenius JC, Nicholson-Weller A (2000) Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med 192:1797–1808CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fearon DT (1980) Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte and monocyte. J Exp Med 152:20–30CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cornacoff JB, Hebert LA, Smead WL, Van Aman ME, Birmingham DJ, Waxman FJ (1983) Primate erythrocyte-immune complex-clearing mechanism. J Clin Invest 71:236–247CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Paccaud JP, Carpentier J-L, Schifferli JA (1990) Difference in the clustering of complement receptor 1 (CR1) on polymorphonuclear leukocytes and erythrocytes: effect on immune adherence. Eur J Immunol 20:283–289CrossRefPubMedGoogle Scholar
  24. 24.
    Laine RO, Morgan BP, Esser AF (1988) Comparison between complement and melittin hemolysis: anti-melittin antibodies inhibit complement lysis. Biochemistry 27(14):5308–5314. PubMed PMID: 2458761CrossRefPubMedGoogle Scholar
  25. 25.
    Laine RO, Esser AF (1989) Identification of the discontinuous epitope in human complement protein C9 recognized by anti-melittin antibodies. J Immunol 143(2):553–557. PubMed PMID: 2472443PubMedGoogle Scholar
  26. 26.
    Black SM, Schott ME, Batdorf BH, Benson BA, Rutherford MS, Levay-Young BK, Dalmasso AP (2010) IL-4 induces protection of vascular endothelial cells against killing by complement and melittin through lipid biosynthesis. Eur J Immunol 40(3):803–812. doi: 10.1002/eji.200939488. PubMed PMID: 20017192CrossRefPubMedGoogle Scholar
  27. 27.
    Benson BA, Vercellotti GM, Dalmasso AP (2015) IL-4 and IL-13 induce protection from complement and melittin in endothelial cells despite initial loss of cytoplasmic proteins: membrane resealing impairs quantifying cytotoxicity with the lactate dehydrogenase permeability assay. Xenotransplantation 22(4):295–301. doi: 10.1111/xen.12172. PubMed PMID: 26031609; PMCID: PMC4519407CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hetland G, Johnson E, Eskeland T (1987) Formation of the membrane attack complex of complement (MAC) on erythrocytes from monocyte-produced terminal complement components. Scand J Immunol 25(6):571–577. PubMed PMID: 3602934CrossRefPubMedGoogle Scholar
  29. 29.
    Esser AF (1991) Big MAC attack: complement proteins cause leaky patches. Immunol Today 12(9):316–318. doi: 10.1016/0167-5699(91)90006-F. discussion 21. PubMed PMID: 1721818CrossRefPubMedGoogle Scholar
  30. 30.
    Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR (2015) Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res 14(6):2367–2384. doi: 10.1021/pr501279t. PubMed PMID: 25927954CrossRefPubMedGoogle Scholar
  31. 31.
    Choi H, Lee DS (2016) Illuminating the physiology of extracellular vesicles. Stem Cell Res Ther 7(1):55. doi: 10.1186/s13287-016-0316-1. PubMed PMID: 27084088; PMCID: PMC4833943CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ziller F, Macor P, Bulla R, Sblattero D, Marzari R, Tedesco F (2005) Controlling complement resistance in cancer by using human monoclonal antibodies that neutralize complement-regulatory proteins CD55 and CD59. Eur J Immunol 35(7):2175–2183. doi: 10.1002/eji.200425920. PubMed PMID: 15971270CrossRefPubMedGoogle Scholar
  33. 33.
    Pilzer D, Gasser O, Moskovich O, Schifferli JA, Fishelson Z (2005) Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Semin Immunopathol 27(3):375–387. doi: 10.1007/s00281-005-0004-1. PubMed PMID: 16189651CrossRefPubMedGoogle Scholar
  34. 34.
    Lopatina T, Gai C, Deregibus MC, Kholia S, Camussi G (2016) Cross talk between cancer and mesenchymal stem cells through extracellular vesicles carrying nucleic acids. Front Oncol 6:125. doi: 10.3389/fonc.2016.00125. PubMed PMID: 27242964; PMCID: PMC4876347CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Desrochers LM, Antonyak MA, Cerione RA (2016) Extracellular vesicles: satellites of information transfer in cancer and stem cell biology. Dev Cell 37(4):301–309. doi: 10.1016/j.devcel.2016.04.019. PubMed PMID: 27219060; PMCID: PMC4995598CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Azzouzi I, Moest H, Wollscheid B, Schmugge M, Eekels JJ, Speer O (2015) Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells. Exp Hematol 43(5):382–392. doi: 10.1016/j.exphem.2015.01.007. PubMed PMID: 25681748CrossRefPubMedGoogle Scholar
  37. 37.
    Wang ZY, Yang FM, Liu J, Li R, Li XP, Jing ZH (2015) Correlation between the expression of microRNA 451 in red blood cells and chronic mountain sickness. Zhongguo Shi Yan Xue Ye Xue Za Zhi 23(2):481–484. doi: 10.7534/j.issn.1009-2137.2015.02.036. PubMed PMID: 25948209PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Winston Patrick Kuo
    • 1
    • 2
    Email author
  • John C. Tigges
    • 3
  • Vasilis Toxavidis
    • 3
  • Ionita Ghiran
    • 3
  1. 1.CloudHealth Genomics, LtdShanghaiChina
  2. 2.Weschester Biotech ProjectAsbury ParkUSA
  3. 3.Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations