Skip to main content

Red Blood Cells: A Source of Extracellular Vesicles

  • Protocol
  • First Online:
Extracellular Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1660))

Abstract

During their lifetime, like all other cell types, red blood cells (RBCs) release both exosomes and plasma membrane derived EVs (ectosomes). RBC exosomes are formed only during the development of RBCs in bone marrow, and are released following the fusion of microvesicular bodies (MVB) with the plasma membrane. On the other hand, RBC EVs are generated during normal aging of RBCs in circulation by budding of the plasma membrane due to complement -mediated calcium influx, followed by vesicle shedding. This makes red blood cells and stored red cells a reliable source of EVs for basic and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burnouf T, Chou ML, Goubran H, Cognasse F, Garraud O, Seghatchian J (2015) An overview of the role of microparticles/microvesicles in blood components: are they clinically beneficial or harmful? Transfus Apher Sci 53(2):137–145. doi:10.1016/j.transci.2015.10.010. PubMed PMID: 26596959

    Article  PubMed  Google Scholar 

  2. Keuren JF, Magdeleyns EJ, Govers-Riemslag JW, Lindhout T, Curvers J (2006) Effects of storage-induced platelet microparticles on the initiation and propagation phase of blood coagulation. Br J Haematol 134(3):307–313. doi:10.1111/j.1365-2141.2006.06167.x. PubMed PMID: 16848773

    Article  CAS  PubMed  Google Scholar 

  3. Donadee C, Raat NJ, Kanias T, Tejero J, Lee JS, Kelley EE, Zhao X, Liu C, Reynolds H, Azarov I, Frizzell S, Meyer EM, Donnenberg AD, Qu L, Triulzi D, Kim-Shapiro DB, Gladwin MT (2011) Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation 124(4):465–476. doi:10.1161/CIRCULATIONAHA.110.008698. PubMed PMID: 21747051; PMCID: PMC3891836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tinmouth A, Chin-Yee I (2001) The clinical consequences of the red cell storage lesion. Transfus Med Rev 15(2):91–107. PubMed PMID: 11309731

    Article  CAS  PubMed  Google Scholar 

  5. Chin-Yee I, Arya N, d'Almeida MS (1997) The red cell storage lesion and its implication for transfusion. Transfus Sci 18(3):447–458. doi: S095538869700043X [pii]. Epub 1997/08/05. PubMed PMID: 10175158

    Article  CAS  PubMed  Google Scholar 

  6. Spiess BD (2007) Red cell transfusions and guidelines: a work in progress. Hematol Oncol Clin North Am 21(1):185–200. doi:10.1016/j.hoc.2006.11.006. Epub 2007/01/30. S0889-8588(06)00190-0 [pii]. PubMed PMID: 17258127

    Article  PubMed  Google Scholar 

  7. Solheim BG, Hess JR (2009) In: Simon TL, Snyder EI, Solheim BG, Strauss RG, Peride M (eds) Rossi's principles of transfusion medicine, 4th edn. Blackwell Publishing, New Jersey

    Google Scholar 

  8. Hess JR (2006) An update on solutions for red cell storage. Vox Sang 91(1):13–19. doi:10.1111/j.1423-0410.2006.00778.x. Epub 2006/06/08. VOX778 [pii]. PubMed PMID: 16756596

    Article  CAS  PubMed  Google Scholar 

  9. Gyongyossy-Issa MI, Weiss SL, Sowemimo-Coker SO, Garcez RB, Devine DV (2005) Prestorage leukoreduction and low-temperature filtration reduce hemolysis of stored red cell concentrates. Transfusion 45(1):90–96. doi:10.1111/j.1537-2995.2005.04061.x. Epub 2005/01/14. TRF04061 [pii]. PubMed PMID: 15647023

    Article  CAS  PubMed  Google Scholar 

  10. Yoshida T, AuBuchon JP, Tryzelaar L, Foster KY, Bitensky MW (2007) Extended storage of red blood cells under anaerobic conditions. Vox Sang 92(1):22–31. doi:10.1111/j.1423-0410.2006.00860.x. Epub 2006/12/22. VOX860 [pii]. PubMed PMID: 17181587

    Article  CAS  PubMed  Google Scholar 

  11. Yoshida T, AuBuchon JP, Dumont LJ, Gorham JD, Gifford SC, Foster KY, Bitensky MW (2008) The effects of additive solution pH and metabolic rejuvenation on anaerobic storage of red cells. Transfusion 48(10):2096–2105. doi:10.1111/j.1537-2995.2008.01812.x. Epub 2008/07/18. TRF01812 [pii]. PubMed PMID: 18631166

    Article  CAS  PubMed  Google Scholar 

  12. Pascual M, Lutz HU, Steiger G, Stammler P, Schifferli JA (1993) Release of vesicles enriched in complement receptor 1 from human erythrocytes. J Immunol 151(1):397–404. PubMed PMID: 8326133

    CAS  PubMed  Google Scholar 

  13. Nelson RAJ (1953) The immune adherence phenomenon: an immunologically specfic reaction between microorganisms and erythrocytes leading to enhanced phagocytosis. Science 118:733–737

    Article  PubMed  Google Scholar 

  14. Pilsczek FH, Nicholson-Weller A, Ghiran I (2005) Phagocytosis of Salmonella montevideo by human neutrophils: immune adherence increases phagocytosis, whereas the bacterial surface determines the route of intracellular processing. J Infect Dis 192(2):200–209. doi:10.1086/430947. Epub 2005/06/18. JID31399 [pii]. PubMed PMID: 15962214

    Article  PubMed  Google Scholar 

  15. Klickstein LB, Bartow TJ, Miletic B, Rabson LD, Smith JA, Fearon DT (1988) Identification of distinct C3b and C4b recognition sites in the human C3b/C4b receptor (CR1, CD35) by deletion mutagenesis. J Exp Med 168:1699–1717

    Article  CAS  PubMed  Google Scholar 

  16. Krych M, Hourcade D, Atkinson JP (1991) Sites within the complement C3b/C4b receptor important for the specificity of ligand binding. Proc Natl Acad Sci U S A 88(10):4353–4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Makrides SC, Scesney SM, Ford PJ, Evans KS, Carson GR, Marsh HCJ (1992) Cell surface expression of the C3b/C4b receptor (CR1) protects Chinese hamster ovary cells from lysis by human complement. J Biol Chem 267:24754–24761

    CAS  PubMed  Google Scholar 

  18. Klickstein LB, Barbashov S, Liu T, Jack RM, Nicholson-Weller A (1997) Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 7:345–355

    Article  CAS  PubMed  Google Scholar 

  19. Tas SW, Klickstein LB, Nicholson-Weller A (1999) C1q and C4b are additive ligands for CR1 and mediate erythrocyte adhesion. J Immunol 163:5056–5063

    CAS  PubMed  Google Scholar 

  20. Ghiran I, Barbashov SF, Klickstein LB, Tas SW, Jensenius JC, Nicholson-Weller A (2000) Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med 192:1797–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fearon DT (1980) Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte and monocyte. J Exp Med 152:20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cornacoff JB, Hebert LA, Smead WL, Van Aman ME, Birmingham DJ, Waxman FJ (1983) Primate erythrocyte-immune complex-clearing mechanism. J Clin Invest 71:236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paccaud JP, Carpentier J-L, Schifferli JA (1990) Difference in the clustering of complement receptor 1 (CR1) on polymorphonuclear leukocytes and erythrocytes: effect on immune adherence. Eur J Immunol 20:283–289

    Article  CAS  PubMed  Google Scholar 

  24. Laine RO, Morgan BP, Esser AF (1988) Comparison between complement and melittin hemolysis: anti-melittin antibodies inhibit complement lysis. Biochemistry 27(14):5308–5314. PubMed PMID: 2458761

    Article  CAS  PubMed  Google Scholar 

  25. Laine RO, Esser AF (1989) Identification of the discontinuous epitope in human complement protein C9 recognized by anti-melittin antibodies. J Immunol 143(2):553–557. PubMed PMID: 2472443

    CAS  PubMed  Google Scholar 

  26. Black SM, Schott ME, Batdorf BH, Benson BA, Rutherford MS, Levay-Young BK, Dalmasso AP (2010) IL-4 induces protection of vascular endothelial cells against killing by complement and melittin through lipid biosynthesis. Eur J Immunol 40(3):803–812. doi:10.1002/eji.200939488. PubMed PMID: 20017192

    Article  CAS  PubMed  Google Scholar 

  27. Benson BA, Vercellotti GM, Dalmasso AP (2015) IL-4 and IL-13 induce protection from complement and melittin in endothelial cells despite initial loss of cytoplasmic proteins: membrane resealing impairs quantifying cytotoxicity with the lactate dehydrogenase permeability assay. Xenotransplantation 22(4):295–301. doi:10.1111/xen.12172. PubMed PMID: 26031609; PMCID: PMC4519407

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hetland G, Johnson E, Eskeland T (1987) Formation of the membrane attack complex of complement (MAC) on erythrocytes from monocyte-produced terminal complement components. Scand J Immunol 25(6):571–577. PubMed PMID: 3602934

    Article  CAS  PubMed  Google Scholar 

  29. Esser AF (1991) Big MAC attack: complement proteins cause leaky patches. Immunol Today 12(9):316–318. doi:10.1016/0167-5699(91)90006-F. discussion 21. PubMed PMID: 1721818

    Article  CAS  PubMed  Google Scholar 

  30. Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR (2015) Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res 14(6):2367–2384. doi:10.1021/pr501279t. PubMed PMID: 25927954

    Article  CAS  PubMed  Google Scholar 

  31. Choi H, Lee DS (2016) Illuminating the physiology of extracellular vesicles. Stem Cell Res Ther 7(1):55. doi:10.1186/s13287-016-0316-1. PubMed PMID: 27084088; PMCID: PMC4833943

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ziller F, Macor P, Bulla R, Sblattero D, Marzari R, Tedesco F (2005) Controlling complement resistance in cancer by using human monoclonal antibodies that neutralize complement-regulatory proteins CD55 and CD59. Eur J Immunol 35(7):2175–2183. doi:10.1002/eji.200425920. PubMed PMID: 15971270

    Article  CAS  PubMed  Google Scholar 

  33. Pilzer D, Gasser O, Moskovich O, Schifferli JA, Fishelson Z (2005) Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springer Semin Immunopathol 27(3):375–387. doi:10.1007/s00281-005-0004-1. PubMed PMID: 16189651

    Article  CAS  PubMed  Google Scholar 

  34. Lopatina T, Gai C, Deregibus MC, Kholia S, Camussi G (2016) Cross talk between cancer and mesenchymal stem cells through extracellular vesicles carrying nucleic acids. Front Oncol 6:125. doi:10.3389/fonc.2016.00125. PubMed PMID: 27242964; PMCID: PMC4876347

    Article  PubMed  PubMed Central  Google Scholar 

  35. Desrochers LM, Antonyak MA, Cerione RA (2016) Extracellular vesicles: satellites of information transfer in cancer and stem cell biology. Dev Cell 37(4):301–309. doi:10.1016/j.devcel.2016.04.019. PubMed PMID: 27219060; PMCID: PMC4995598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Azzouzi I, Moest H, Wollscheid B, Schmugge M, Eekels JJ, Speer O (2015) Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells. Exp Hematol 43(5):382–392. doi:10.1016/j.exphem.2015.01.007. PubMed PMID: 25681748

    Article  CAS  PubMed  Google Scholar 

  37. Wang ZY, Yang FM, Liu J, Li R, Li XP, Jing ZH (2015) Correlation between the expression of microRNA 451 in red blood cells and chronic mountain sickness. Zhongguo Shi Yan Xue Ye Xue Za Zhi 23(2):481–484. doi:10.7534/j.issn.1009-2137.2015.02.036. PubMed PMID: 25948209

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winston Patrick Kuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kuo, W.P., Tigges, J.C., Toxavidis, V., Ghiran, I. (2017). Red Blood Cells: A Source of Extracellular Vesicles. In: Kuo, W., Jia, S. (eds) Extracellular Vesicles. Methods in Molecular Biology, vol 1660. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7253-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7253-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7251-7

  • Online ISBN: 978-1-4939-7253-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics