Microcapillary Chip-Based Extracellular Vesicle Profiling System

  • Takanori Akagi
  • Takanori IchikiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)


A microcapillary chip-based particle electrophoresis system developed for characterizing extracellular vesicles (EVs) is described. So far, it is technologically difficult to analyze or identify a heterogeneous population of particles ranging from several tens to one hundred nanometers, and hence, there is a growing demand for a new analytical method of nanoparticles among researchers working on extracellular vesicles. The analytical platform presented in this chapter allows detection of individual nanoparticles or nanovesicles of less than 50 nm in diameter and enables the characterization of nanoparticles based on multiple indexes such as concentration, diameter, zeta potential, and surface antigenicity. This platform will provide a useful and easy-to-use solution for obtaining both quantitative and qualitative information on EV samples used in research and development of exosome biology and medicine.

Key words

Exosomes Microcapillary chip Dark-field microscopy Immonoelectrophoresis Particle electrophoresis Multiplex assay Zeta potential Brownian motion analysis Subpopulation 


  1. 1.
    Kim D-K, Lee J, Simpson RJ, Lötvall J, Gho YS (2015) EVpedia: a community web resource for prokaryotic and eukaryotic extracellular vesicles research. Semin Cell Dev Biol 40:4–7CrossRefPubMedGoogle Scholar
  2. 2.
    Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR (2015) Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res 14:2367–2384CrossRefPubMedGoogle Scholar
  3. 3.
    Hill AF, Pegtel DM, Lambertz U, Leonardi T, O’driscoll L, Pluchino S, Ter-Ovanesyan D, Nolte EN (2013) ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. J Extracell Vesicles 2. doi: 10.3402/jev.v2i0.22859
  4. 4.
    Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL, Dobson PJ (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7:780–788CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Balaj L, Tigges J, Toxavidis V, Ivanov AR, Skog J, Momen Heravi F, Alian S, Ericsson M, Distel R, Kuo WP (2012) Alternative methods for characterization of extracellular vesicles. Front Physiol 3:354PubMedPubMedCentralGoogle Scholar
  6. 6.
    Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci 113:E968–E977CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    van der Vlist EJ, Nolte-’t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH (2012) Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc 7:1311–1326CrossRefPubMedGoogle Scholar
  8. 8.
    Mehrishi JN, Bauer J (2002) Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis 23:1984–1994CrossRefPubMedGoogle Scholar
  9. 9.
    Kato K, Kobayashi M, Hanamura N, Akagi T, Kosaka N, Ochiya T, Ichiki T (2013) Electrokinetic evaluation of individual exosomes by on-chip microcapillary electrophoresis with laser dark-field microscopy. Jpn J Appl Phys 52:06GK10CrossRefGoogle Scholar
  10. 10.
    Akagi T, Kato K, Hanamura N, Kobayashi M, Ichiki T (2014) Evaluation of desialylation effect on zeta potential of extracellular vesicles secreted from human prostate cancer cells by on-chip microcapillary electrophoresis. Jpn J Appl Phys 53:06JL01CrossRefGoogle Scholar
  11. 11.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefPubMedGoogle Scholar
  12. 12.
    Akagi T, Kato K, Kobayashi M, Kosaka N, Ochiya T, Ichiki T (2015) On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells. PLoS One 10:e0123603CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Materials Engineering, School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations