Skip to main content

Purification Protocols for Extracellular Vesicles

  • Protocol
  • First Online:
Extracellular Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1660))

Abstract

This chapter provides a description of some of the standard methods used for the isolation of extracellular vesicles (EVs) from a variety of biological fluids, including cell culture media, urine, plasma and serum. The methods presented include ultracentrifugation, ultrafiltration, proprietary polymer-based reagents, size exclusion chromatography, density gradient separation, and immunoaffinity capture. Ultracentrifugation methods use high speed centrifugation to pellet vesicles, whilst polymer-based reagents are added to the sample to facilitate vesicle precipitation using lower speeds. Ultrafiltration involves the concentration of vesicles from a large volume of biological fluid using a centrifugal filter unit. Size exclusion chromatography and density gradient separation are both designed to allow the separation of vesicles from other nonvesicular debris. Immunoaffinity capture methods use antibody-coated beads to selectively isolate vesicles displaying a surface marker of interest. Ultimately, the choice of purification method for an individual experiment is influenced by time, cost, and equipment considerations, as well as the sample requirements for any downstream analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Pol E, Boing AN, Harrison P et al (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705. doi:10.1124/pr.112.005983

    Article  PubMed  Google Scholar 

  2. Anderson HC, Mulhall D, Garimella R (2010) Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Lab Investig 90(11):1549–1557. doi:10.1038/labinvest.2010.152

    Article  CAS  PubMed  Google Scholar 

  3. Park JE, Tan HS, Datta A et al (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9(6):1085–1099. doi:10.1074/mcp.M900381-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Costa-Silva B, Aiello NM, Ocean AJ et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826. doi:10.1038/ncb3169

    Article  CAS  PubMed  Google Scholar 

  5. Hoshino A, Costa-Silva B, Shen TL et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335. doi:10.1038/nature15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476. doi:10.1038/ncb1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keller S, Konig AK, Marme F et al (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278(1):73–81. doi:10.1016/j.canlet.2008.12.028

    Article  CAS  PubMed  Google Scholar 

  8. Muller L, Hong CS, Stolz DB et al (2014) Isolation of biologically-active exosomes from human plasma. J Immunol Methods 411:55–65. doi:10.1016/j.jim.2014.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lobb RJ, Becker M, Wen S et al (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031. doi:10.3402/jev.v4.27031

    Article  PubMed  Google Scholar 

  10. Rood IM, Deegens JK, Merchant ML et al (2010) Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int 78(8):810–816. doi:10.1038/ki.2010.262

    Article  CAS  PubMed  Google Scholar 

  11. Nordin JZ, Lee Y, Vader P et al (2015) Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 11(4):879–883. doi:10.1016/j.nano.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  12. Boing AN, van der Pol E, Grootemaat AE et al (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 3. doi:10.3402/jev.v3.23430

  13. Yuana Y, Levels J, Grootemaat A et al (2014) Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. J Extracell Vesicles 3. doi:10.3402/jev.v3.23262

  14. Mathivanan S, Lim JW, Tauro BJ et al (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9(2):197–208. doi:10.1074/mcp.M900152-MCP200

    Article  CAS  PubMed  Google Scholar 

  15. Alvarez ML, Khosroheidari M, Kanchi Ravi R et al (2012) Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int 82(9):1024–1032. doi:10.1038/ki.2012.256

    Article  CAS  PubMed  Google Scholar 

  16. Momen-Heravi F, Balaj L, Alian S et al (2013) Current methods for the isolation of extracellular vesicles. Biol Chem 394(10):1253–1262. doi:10.1515/hsz-2013-0141

    Article  CAS  PubMed  Google Scholar 

  17. Livshts MA, Khomyakova E, Evtushenko EG et al (2015) Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep 5:17319. doi:10.1038/srep17319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107(9):1047–1057. doi:10.1161/CIRCRESAHA.110.226456

    Article  CAS  PubMed  Google Scholar 

  19. Théry C, Amigorena S, Raposo G et al. (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Chapter 3:Unit 3.22. doi:10.1002/0471143030.cb0322s30

  20. Lane RE, Korbie D, Anderson W et al (2015) Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci Rep 5:7639. doi:10.1038/srep07639

    Article  PubMed  PubMed Central  Google Scholar 

  21. Van Deun J, Mestdagh P, Sormunen R et al (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles 3. doi:10.3402/jev.v3.24858

  22. Wu CS (2003) Handbook of size exclusion chromatography and related techniques: revised and expanded. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  23. Clark DJ, Fondrie WE, Liao Z et al (2015) Redefining the breast cancer exosome proteome by tandem mass tag quantitative proteomics and multivariate cluster analysis. Anal Chem 87(20):10462–10469. doi:10.1021/acs.analchem.5b02586

    Article  CAS  PubMed  Google Scholar 

  24. Anderson W, Lane R, Korbie D et al (2015) Observations of tunable resistive pulse sensing for exosome analysis: improving system sensitivity and stability. Langmuir 31(23):6577–6587. doi:10.1021/acs.langmuir.5b01402

    Article  CAS  PubMed  Google Scholar 

  25. Dragovic RA, Gardiner C, Brooks AS et al (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7(6):780–788. doi:10.1016/j.nano.2011.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalra H, Adda CG, Liem M et al (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13(22):3354–3364. doi:10.1002/pmic.201300282

    Article  CAS  PubMed  Google Scholar 

  27. Torregrosa Paredes P, Gutzeit C, Johansson S et al (2014) Differences in exosome populations in human breast milk in relation to allergic sensitization and lifestyle. Allergy 69(4):463–471. doi:10.1111/all.12357

    Article  CAS  PubMed  Google Scholar 

  28. Tauro BJ, Greening DW, Mathias RA et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56(2):293–304. doi:10.1016/j.ymeth.2012.01.002

  29. de Menezes-Neto A, Saez MJ, Lozano-Ramos I et al (2015) Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J Extracell Vesicles 4:27378. doi:10.3402/jev.v4.27378

    Article  PubMed  Google Scholar 

  30. Eldh M, Lotvall J, Malmhall C et al (2012) Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol Immunol 50(4):278–286. doi:10.1016/j.molimm.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  31. Runz S, Keller S, Rupp C et al (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107(3):563–571. doi:10.1016/j.ygyno.2007.08.064

    Article  CAS  PubMed  Google Scholar 

  32. Admyre C, Johansson SM, Qazi KR et al (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179(3):1969–1978. doi:10.4049/jimmunol.179.3.1969

    Article  CAS  PubMed  Google Scholar 

  33. Sharma S, Gillespie BM, Palanisamy V et al (2011) Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir 27(23):14394–14400. doi:10.1021/la2038763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schroder M, Schafer R, Friedl P (1997) Spectrophotometric determination of iodixanol in subcellular fractions of mammalian cells. Anal Biochem 244(1):174–176. doi:10.1006/abio.1996.9861

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Trau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lane, R.E., Korbie, D., Trau, M., Hill, M.M. (2017). Purification Protocols for Extracellular Vesicles. In: Kuo, W., Jia, S. (eds) Extracellular Vesicles. Methods in Molecular Biology, vol 1660. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7253-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7253-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7251-7

  • Online ISBN: 978-1-4939-7253-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics