Purification Protocols for Extracellular Vesicles

  • Rebecca E. Lane
  • Darren Korbie
  • Matt TrauEmail author
  • Michelle M. Hill
Part of the Methods in Molecular Biology book series (MIMB, volume 1660)


This chapter provides a description of some of the standard methods used for the isolation of extracellular vesicles (EVs) from a variety of biological fluids, including cell culture media, urine, plasma and serum. The methods presented include ultracentrifugation, ultrafiltration, proprietary polymer-based reagents, size exclusion chromatography, density gradient separation, and immunoaffinity capture. Ultracentrifugation methods use high speed centrifugation to pellet vesicles, whilst polymer-based reagents are added to the sample to facilitate vesicle precipitation using lower speeds. Ultrafiltration involves the concentration of vesicles from a large volume of biological fluid using a centrifugal filter unit. Size exclusion chromatography and density gradient separation are both designed to allow the separation of vesicles from other nonvesicular debris. Immunoaffinity capture methods use antibody-coated beads to selectively isolate vesicles displaying a surface marker of interest. Ultimately, the choice of purification method for an individual experiment is influenced by time, cost, and equipment considerations, as well as the sample requirements for any downstream analyses.

Key words

Extracellular vesicles Exosomes Microvesicles Isolation 


  1. 1.
    van der Pol E, Boing AN, Harrison P et al (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705. doi: 10.1124/pr.112.005983 CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson HC, Mulhall D, Garimella R (2010) Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Lab Investig 90(11):1549–1557. doi: 10.1038/labinvest.2010.152 CrossRefPubMedGoogle Scholar
  3. 3.
    Park JE, Tan HS, Datta A et al (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9(6):1085–1099. doi: 10.1074/mcp.M900381-MCP200 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Costa-Silva B, Aiello NM, Ocean AJ et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826. doi: 10.1038/ncb3169 CrossRefPubMedGoogle Scholar
  5. 5.
    Hoshino A, Costa-Silva B, Shen TL et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335. doi: 10.1038/nature15756 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476. doi: 10.1038/ncb1800 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Keller S, Konig AK, Marme F et al (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278(1):73–81. doi: 10.1016/j.canlet.2008.12.028 CrossRefPubMedGoogle Scholar
  8. 8.
    Muller L, Hong CS, Stolz DB et al (2014) Isolation of biologically-active exosomes from human plasma. J Immunol Methods 411:55–65. doi: 10.1016/j.jim.2014.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lobb RJ, Becker M, Wen S et al (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031. doi: 10.3402/jev.v4.27031 CrossRefPubMedGoogle Scholar
  10. 10.
    Rood IM, Deegens JK, Merchant ML et al (2010) Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int 78(8):810–816. doi: 10.1038/ki.2010.262 CrossRefPubMedGoogle Scholar
  11. 11.
    Nordin JZ, Lee Y, Vader P et al (2015) Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 11(4):879–883. doi: 10.1016/j.nano.2015.01.003 CrossRefPubMedGoogle Scholar
  12. 12.
    Boing AN, van der Pol E, Grootemaat AE et al (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 3. doi: 10.3402/jev.v3.23430
  13. 13.
    Yuana Y, Levels J, Grootemaat A et al (2014) Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. J Extracell Vesicles 3. doi: 10.3402/jev.v3.23262
  14. 14.
    Mathivanan S, Lim JW, Tauro BJ et al (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9(2):197–208. doi: 10.1074/mcp.M900152-MCP200 CrossRefPubMedGoogle Scholar
  15. 15.
    Alvarez ML, Khosroheidari M, Kanchi Ravi R et al (2012) Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int 82(9):1024–1032. doi: 10.1038/ki.2012.256 CrossRefPubMedGoogle Scholar
  16. 16.
    Momen-Heravi F, Balaj L, Alian S et al (2013) Current methods for the isolation of extracellular vesicles. Biol Chem 394(10):1253–1262. doi: 10.1515/hsz-2013-0141 CrossRefPubMedGoogle Scholar
  17. 17.
    Livshts MA, Khomyakova E, Evtushenko EG et al (2015) Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep 5:17319. doi: 10.1038/srep17319 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107(9):1047–1057. doi: 10.1161/CIRCRESAHA.110.226456 CrossRefPubMedGoogle Scholar
  19. 19.
    Théry C, Amigorena S, Raposo G et al. (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Chapter 3:Unit 3.22. doi: 10.1002/0471143030.cb0322s30
  20. 20.
    Lane RE, Korbie D, Anderson W et al (2015) Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci Rep 5:7639. doi: 10.1038/srep07639 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Van Deun J, Mestdagh P, Sormunen R et al (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles 3. doi: 10.3402/jev.v3.24858
  22. 22.
    Wu CS (2003) Handbook of size exclusion chromatography and related techniques: revised and expanded. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  23. 23.
    Clark DJ, Fondrie WE, Liao Z et al (2015) Redefining the breast cancer exosome proteome by tandem mass tag quantitative proteomics and multivariate cluster analysis. Anal Chem 87(20):10462–10469. doi: 10.1021/acs.analchem.5b02586 CrossRefPubMedGoogle Scholar
  24. 24.
    Anderson W, Lane R, Korbie D et al (2015) Observations of tunable resistive pulse sensing for exosome analysis: improving system sensitivity and stability. Langmuir 31(23):6577–6587. doi: 10.1021/acs.langmuir.5b01402 CrossRefPubMedGoogle Scholar
  25. 25.
    Dragovic RA, Gardiner C, Brooks AS et al (2011) Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7(6):780–788. doi: 10.1016/j.nano.2011.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kalra H, Adda CG, Liem M et al (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13(22):3354–3364. doi: 10.1002/pmic.201300282 CrossRefPubMedGoogle Scholar
  27. 27.
    Torregrosa Paredes P, Gutzeit C, Johansson S et al (2014) Differences in exosome populations in human breast milk in relation to allergic sensitization and lifestyle. Allergy 69(4):463–471. doi: 10.1111/all.12357 CrossRefPubMedGoogle Scholar
  28. 28.
    Tauro BJ, Greening DW, Mathias RA et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56(2):293–304. doi: 10.1016/j.ymeth.2012.01.002
  29. 29.
    de Menezes-Neto A, Saez MJ, Lozano-Ramos I et al (2015) Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J Extracell Vesicles 4:27378. doi: 10.3402/jev.v4.27378 CrossRefPubMedGoogle Scholar
  30. 30.
    Eldh M, Lotvall J, Malmhall C et al (2012) Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol Immunol 50(4):278–286. doi: 10.1016/j.molimm.2012.02.001 CrossRefPubMedGoogle Scholar
  31. 31.
    Runz S, Keller S, Rupp C et al (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107(3):563–571. doi: 10.1016/j.ygyno.2007.08.064 CrossRefPubMedGoogle Scholar
  32. 32.
    Admyre C, Johansson SM, Qazi KR et al (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179(3):1969–1978. doi: 10.4049/jimmunol.179.3.1969 CrossRefPubMedGoogle Scholar
  33. 33.
    Sharma S, Gillespie BM, Palanisamy V et al (2011) Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir 27(23):14394–14400. doi: 10.1021/la2038763 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schroder M, Schafer R, Friedl P (1997) Spectrophotometric determination of iodixanol in subcellular fractions of mammalian cells. Anal Biochem 244(1):174–176. doi: 10.1006/abio.1996.9861 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Rebecca E. Lane
    • 1
  • Darren Korbie
    • 1
  • Matt Trau
    • 1
    • 3
    Email author
  • Michelle M. Hill
    • 2
  1. 1.Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia
  2. 2.The University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneAustralia
  3. 3.School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations