Skip to main content

Genetic Analysis of Resistance to Wheat Rusts

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1659))

Abstract

Leaf rust, stripe rust, and stem rust pose a significant threat to global wheat production. Growing rust resistant cultivars is the most efficient and environment friendly method to reduce yield losses. Genetic analysis is undertaken to identify genes and study their roles in conferring rust resistance in a given wheat background. This chapter summarizes the protocol for genetic analysis of rust resistance at both seedling and adult plant stages. Additionally, it examines statistical analysis and related software to characterize quantitative trait loci (QTL) linked with rust resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dubin HJ, Brennan JP (2009) Fighting a ‘Shifty Enemy’, the international collaboration to contain wheat rusts. In: Spielman DJ, Pandya-Lorch R (eds) Millions fed: proven successes in agricultural development. International Food Policy Research Institute, Washington. http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/130812

    Google Scholar 

  2. Hovmøller MS, Sørensen CK, Walter S, Justesen AF (2011) Diversity of Puccinia striiformis on cereals and grasses. Annu Rev Phytopathol 49:197–217

    Article  PubMed  Google Scholar 

  3. Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua M, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 1:54

    Google Scholar 

  4. Chen XM (2013) Review article: high-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 4:608–627

    Article  Google Scholar 

  5. Flor HH (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–669

    Google Scholar 

  6. Das MK, Rajaram S, Mundt CC, Kronstad WE, Singh RP (1992) Inheritance of slow rusting resistance in wheat. Crop Sci 32:1452–1456

    Article  Google Scholar 

  7. Johnson R, Law CN (1973) Cytogenetic studies on the resistance of the wheat variety Bersée to Puccinia striiformis. Cereal Rusts Bull 1:38–43

    Google Scholar 

  8. Bjarko ME, Line RF (1988) Heritability and number of genes controlling leaf rust resistance in four cultivars of wheat. Phytopathology 78:457–461

    Article  Google Scholar 

  9. Browder LE (1971) Pathogenic specialization in cereal rust fungi, especially Puccinia recondite f. sp. tritici: Concepts, methods of study and application. US Dep Agric Tech Bull 1432:pp51

    Google Scholar 

  10. McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, East Melbourne, Australia

    Book  Google Scholar 

  11. Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico, D.F.

    Google Scholar 

  12. Manly KF, Cudmore RH Jr, Meer JM (2011) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12(12):930–932

    Article  Google Scholar 

  13. Van Ooijen JW (2006) Join map 4, software for the calculation of genetic linkage maps in experimental population. Plant Research International, Wageningen, Netherlands. http://www.joinmap.nl

  14. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. Heredity 93:77–78

    Article  CAS  Google Scholar 

  15. Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  16. Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  17. McNeal FH, Konzak CF, Smith EP, Tate WS, Russell TS (1971) A uniform system for recording and processing cereal research data. USDA-ARS Bull, Washington, pp 34–121

    Google Scholar 

  18. Peterson RF, Campbell AB, Hannah AE (1948) A dia-grammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res 26:496–500

    Article  Google Scholar 

  19. Saiki RK, Scharf S, Faloona F, Mullis KB, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  CAS  PubMed  Google Scholar 

  20. Devos KM, Gale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet 84:567–572

    CAS  PubMed  Google Scholar 

  21. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    Article  CAS  PubMed  Google Scholar 

  22. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  23. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genomewide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hamilton JP, Buell CR (2012) Advances in plant genome sequencing. Plant J 70:177–190

    Article  CAS  PubMed  Google Scholar 

  26. Elshire RJ, Glaubitz JC, SunQ PJA, Kawamoto K, Buckler ES, Mitchel SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knott DR, Padidam M (1988) Inheritance of resistance to stem rust in six wheat lines having adult plant resistance. Genome 30:283–288

    Article  Google Scholar 

  29. Singh RP, Rajaram S (1992) Genetics of adult-plant resistance to leaf rust in ‘Frontana’ and three CIMMYT wheats. Genome 35:24–31

    Article  Google Scholar 

  30. Wright S (1968) Evolution and the genetics of populations. In: Genetic and biometric foundations, vol 1. University of Chicago Press, Chicago, IL

    Google Scholar 

  31. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Grains Research and Development Corporation (GRDC), Australian Cereal Rust Control Program, and National Natural Science Foundation of China (31301309). We appreciate the technical editing by Julie Mollins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lan, C., Randhawa, M.S., Huerta-Espino, J., Singh, R.P. (2017). Genetic Analysis of Resistance to Wheat Rusts. In: Periyannan, S. (eds) Wheat Rust Diseases. Methods in Molecular Biology, vol 1659. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7249-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7249-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7248-7

  • Online ISBN: 978-1-4939-7249-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics