Skip to main content

Analysis of Prion Protein Structure Using Nuclear Magnetic Resonance Spectroscopy

  • Protocol
  • First Online:
Prions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1658))

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a powerful experimental tool for obtaining information on three-dimensional (3D) structures of proteins at atomic resolution. In inherited forms of prion diseases, misfolding of cellular prion protein, PrPC, into its pathological form, PrPSc, is caused by mutations in the human prion protein gene (PRNP). Understanding of the earliest stages of the conformational changes leading to spontaneous generation of prions in inherited forms of prion diseases may benefit from detailed structural analysis of different human (Hu) PrP variants. Here, we describe the protocol for structure determination of HuPrP variants by NMR spectroscopy in solution that consists of preparation of NMR samples, acquisition of NMR data, NMR resonance assignments, and structure calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calzolai L, Lysek DA, Guntert P et al (2000) NMR structures of three single-residue variants of the human prion protein. Proc Natl Acad Sci U S A 97(15):8340–8345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Christen B, Perez DR, Hornemann S et al (2008) NMR structure of the bank vole prion protein at 20 degrees C contains a structured loop of residues 165-171. J Mol Biol 383(2):306–312

    Article  CAS  PubMed  Google Scholar 

  3. Donne DG, Viles JH, Groth D et al (1997) Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc Natl Acad Sci U S A 94(25):13452–13457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gossert AD, Bonjour S, Lysek DA et al (2005) Prion protein NMR structures of elk and of mouse/elk hybrids. Proc Natl Acad Sci U S A 102(3):646–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. James TL, Liu H, Ulyanov NB et al (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci U S A 94(19):10086–10091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lopez GF, Zahn R, Riek R et al (2000) NMR structure of the bovine prion protein. Proc Natl Acad Sci U S A 97(15):8334–8339

    Article  Google Scholar 

  7. Perez DR, Damberger FF, Wuthrich K (2010) Horse prion protein NMR structure and comparisons with related variants of the mouse prion protein. J Mol Biol 400(2):121–128

    Article  CAS  PubMed  Google Scholar 

  8. Wen Y, Li J, Yao W et al (2010) Unique structural characteristics of the rabbit prion protein. J Biol Chem 285(41):31682–31693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zahn R, Liu A, Luhrs T et al (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A 97(1):145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kovacs GG, Trabattoni G, Hainfellner JA et al (2002) Mutations of the prion protein gene phenotypic spectrum. J Neurol 249(11):1567–1582

    Article  CAS  PubMed  Google Scholar 

  11. Apetri AC, Surewicz K, Surewicz WK (2004) The effect of disease-associated mutations on the folding pathway of human prion protein. J Biol Chem 279(17):18008–18014

    Article  CAS  PubMed  Google Scholar 

  12. Liemann S, Glockshuber R (1999) Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38(11):3258–3267

    Article  CAS  PubMed  Google Scholar 

  13. Swietnicki W, Petersen RB, Gambetti P et al (1998) Familial mutations and the thermodynamic stability of the recombinant human prion protein. J Biol Chem 273(47):31048–31052

    Article  CAS  PubMed  Google Scholar 

  14. Biljan I, Ilc G, Giachin G et al (2012) Structural Rearrangements at Physiological pH: Nuclear Magnetic Resonance Insights from the V210I Human Prion Protein Mutant. Biochemistry 51:7465–7474

    Article  CAS  PubMed  Google Scholar 

  15. Biljan I, Ilc G, Giachin G et al (2011) Toward the Molecular Basis of Inherited Prion Diseases: NMR Structure of the Human Prion Protein with V210I Mutation. J Mol Biol 412:660–673

    Article  CAS  PubMed  Google Scholar 

  16. Ilc G, Giachin G, Jaremko M et al (2010) NMR structure of the human prion protein with the pathological Q212P mutation reveals unique structural features. PLoS One 5(7):e11715

    Article  PubMed  PubMed Central  Google Scholar 

  17. Biljan I, Giachin G, Ilc G et al (2012) Structural basis for the protective effect of the human prion protein carrying the dominant-negative E219K polymorphism. Biochem J 446:243–251

    Article  CAS  PubMed  Google Scholar 

  18. Cavanagh J, Fairbrother WF, Palmer AG et al (2007) Protein NMR spectroscopy: principles and practice, 2nd edn. Elsevier Academic Press, San Diego, CA

    Google Scholar 

  19. Kanelis V, Forman-Kay JD, Kay LE (2001) Multidimensional NMR methods for protein structure determination. IUBMB Life 52:291–302

    Article  CAS  PubMed  Google Scholar 

  20. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Mag Res Sp 34:93–158

    Article  CAS  Google Scholar 

  21. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  CAS  PubMed  Google Scholar 

  22. Goddard TD, Kneller DG (2002) SPARKY 3. University of California, San Francisco, CA

    Google Scholar 

  23. Keller R (2004) The computer aided resonance assignment tutorial. CANTINA Verlag, Goldau

    Google Scholar 

  24. Jung YS, Zweckstetter M (2004) Mars: robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23

    Article  CAS  PubMed  Google Scholar 

  25. Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273(1):283–298

    Article  CAS  PubMed  Google Scholar 

  26. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:298–302

    Article  Google Scholar 

  27. Herrmann T, Guntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319(1):209–227

    Article  CAS  PubMed  Google Scholar 

  28. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA - a self-parameterizing force field. Proteins Struct Funct Genet 47:477–486

    Article  Google Scholar 

  29. Laskowski RA, Rullmann JAC, MacArthur MW et al (1996) AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486

    Article  CAS  PubMed  Google Scholar 

  30. Vriend G (1990) A molecular modelling and drug design program. J Mol Graph 9:52–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janez Plavec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Biljan, I., Ilc, G., Plavec, J. (2017). Analysis of Prion Protein Structure Using Nuclear Magnetic Resonance Spectroscopy. In: Lawson, V. (eds) Prions. Methods in Molecular Biology, vol 1658. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7244-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7244-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7242-5

  • Online ISBN: 978-1-4939-7244-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics