Skip to main content

Isothermal Titration Calorimetry to Determine Apparent Dissociation Constants (K d) and Stoichiometry of Interaction (n) of C-di-GMP Binding Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1657))

Abstract

Isothermal titration calorimetry (ITC) is a commonly used biophysical technique that enables the quantitative characterization of intermolecular interactions in solution. Based on enthalpy changes (ΔH) upon titration of the binding partner (e.g., a small-molecule ligand such as c-di-GMP) to the molecule of interest (e.g., a receptor protein), the resulting binding isotherms provide information on the equilibrium association/dissociation constants (K a, K d) and stoichiometry of binding (n), as well as on changes in the Gibbs free energy (ΔG) and entropy (ΔS) along the interaction. Here we present ITC experiments used for the characterization of c-di-GMP binding proteins and discuss advantages and potential caveats in the interpretation of results.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ross P et al (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325(6101):279–281

    Article  CAS  PubMed  Google Scholar 

  2. Krasteva PV, Sondermann H (2017) Versatile modes of cellular regulation via cyclic dinucleotides. Nat Chem Biol 13:350–359

    Article  CAS  PubMed  Google Scholar 

  3. Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15(5):271–284

    Article  CAS  PubMed  Google Scholar 

  4. Krasteva PV, Giglio KM, Sondermann H (2012) Sensing the messenger: the diverse ways that bacteria signal through c-di-GMP. Protein Sci 21(7):929–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7(10):724–735

    Article  CAS  PubMed  Google Scholar 

  6. Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203(1):11–21

    Article  CAS  PubMed  Google Scholar 

  7. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6

    Article  CAS  PubMed  Google Scholar 

  8. Ryjenkov DA et al (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281(41):30310–30314

    Article  CAS  PubMed  Google Scholar 

  9. De N et al (2008) Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol 6(3):e67

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee VT et al (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65(6):1474–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Navarro MV et al (2009) Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure 17(8):1104–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Navarro MV et al (2011) Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLoS Biol 9(2):e1000588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang YH et al (2012) The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat Struct Mol Biol 19(7):728–730

    Article  CAS  PubMed  Google Scholar 

  14. Shang G et al (2012) Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat Struct Mol Biol 19(7):725–727

    Article  CAS  PubMed  Google Scholar 

  15. Shu C et al (2012) Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat Struct Mol Biol 19(7):722–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tschowri N et al (2014) Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 158(5):1136–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krasteva PV et al (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327(5967):866–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsuyama BY et al (2016) Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 113(2):E209–E218

    Article  CAS  PubMed  Google Scholar 

  19. Wang YC et al (2016) Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat Commun 7:12481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 84:79–113

    Article  CAS  PubMed  Google Scholar 

  21. Stelitano V et al (2013) Probing the activity of diguanylate cyclases and c-di-GMP phosphodiesterases in real-time by CD spectroscopy. Nucleic Acids Res 41(7):e79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De N et al (2010) Biophysical assays for protein interactions in the Wsp sensory system and biofilm formation. Methods Enzymol 471:161–184

    Article  CAS  PubMed  Google Scholar 

  23. Korovashkina AS et al (2012) Enzymatic synthesis of c-di-GMP using inclusion bodies of Thermotoga maritima full-length diguanylate cyclase. J Biotechnol 164(2):276–280

    Article  CAS  PubMed  Google Scholar 

  24. Zahringer F, Massa C, Schirmer T (2011) Efficient enzymatic production of the bacterial second messenger c-di-GMP by the diguanylate cyclase YdeH from E. coli. Appl Biochem Biotechnol 163(1):71–79

    Article  PubMed  Google Scholar 

  25. De N et al (2009) Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR. J Mol Biol 393(3):619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilkins MR et al (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  27. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125(48):14859–14866

    Article  CAS  PubMed  Google Scholar 

  28. Li Z et al (2012) Structures of the PelD cyclic diguanylate effector involved in pellicle formation in Pseudomonas aeruginosa PAO1. J Biol Chem 287(36):30191–30204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the Navarro laboratory is supported by Fundação de Amparo à Pesquisa do Estado de São Paulo under Grant 2009/13238-0. The Krasteva laboratory is supported by the Institute for Integrative Biology of the Cell (I2BC) and by a 2016 ATIP-Avenir grant from the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos V. A. S. Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Matsuyama, B.Y., Krasteva, P.V., Navarro, M.V.A.S. (2017). Isothermal Titration Calorimetry to Determine Apparent Dissociation Constants (K d) and Stoichiometry of Interaction (n) of C-di-GMP Binding Proteins. In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7240-1_30

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7239-5

  • Online ISBN: 978-1-4939-7240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics