Skip to main content

Fluorescent 2-Aminopurine c-di-GMP and GpG Analogs as PDE Probes

  • Protocol
  • First Online:
Book cover c-di-GMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1657))

Abstract

c-di-GMP is widely recognized as an important ubiquitous signaling molecule in bacteria. c-di-GMP phosphodiesterases (PDEs) regulate the intracellular concentration of c-di-GMP and some could be potential drug targets. Here, we describe a class of dinucleotide probes suitable for monitoring the enzymatic activities of c-di-GMP PDEs in real time. Such probes contain fluorescent nucleobases and can be readily cleaved by PDEs, resulting in a change in fluorescence. Fluorescent cyclic and linear dinucleotide probes could be used in diverse applications, such as confirming the activity of an expressed PDE or oligoribonuclease (Orns) or identifying inhibitors of PDEs or Orns using high-throughput screening formats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO (2013) Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p) ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 42(1):305–341. doi:10.1039/c2cs35206k

    Article  CAS  PubMed  Google Scholar 

  2. Schmidt AJ, Ryjenkov DA, Gomelsky M (2005) The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187(14):4774–4781. doi:10.1128/JB.187.14.4774-4781.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Orr MW, Donaldson GP, Severin GB, Wang J, Sintim HO, Waters CM, Lee VT (2015) Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A 112(36):E5048–E5057. doi:10.1073/pnas.1507245112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghosh S, Deutscher MP (1999) Oligoribonuclease is an essential component of the mRNA decay pathway. Proc Natl Acad Sci U S A 96(8):4372–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cohen D, Mechold U, Nevenzal H, Yarmiyhu Y, Randall TE, Bay DC, Rich JD, Parsek MR, Kaever V, Harrison JJ, Banin E (2015) Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas Aeruginosa. Proc Natl Acad Sci U S A 112(36):11359–11364. doi:10.1073/pnas.1421450112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He YW, Zhang LH, Heeb S, Camara M, Williams P, Dow JM (2006) Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103(17):6712–6717. doi:10.1073/pnas.0600345103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peng X, Zhang Y, Bai G, Zhou X, Wu H (2016) Cyclic di-AMP mediates biofilm formation. Mol Microbiol 99(5):945–959. doi:10.1111/mmi.13277

    Article  CAS  PubMed  Google Scholar 

  8. Zheng Y, Tsuji G, Opoku-Temeng C, Sintim HO (2016) Inhibition of P. aeruginosa c-di-GMP phosphodiesterase RocR and swarming motility by a benzoisothiazolinone derivative. Chem Sci 7:6238–6244

    Article  CAS  Google Scholar 

  9. Nakayama S, Zhou J, Zheng Y, Szmacinski H, Sintim HO (2016) Supramolecular polymer formation by cyclic dinucleotides and intercalators affects dinucleotide enzymatic processing. Future Sci OA 2(1):FSO93. doi:10.4155/fso.4115.4193

    Article  PubMed  PubMed Central  Google Scholar 

  10. Opoku-Temeng C, Sintim HO (2016) Inhibition of cyclic diadenylate cyclase, DisA, by polyphenols. Sci Rep 6:25445. doi:10.1038/srep25445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Opoku-Temeng C, Sintim HO (2016) Potent inhibition of cyclic diadenylate monophosphate cyclase by the antiparasitic drug, suramin. Chem Commun (Camb) 52(19):3754–3757. doi:10.1039/c5cc10446g

    Article  CAS  Google Scholar 

  12. Simm R, Morr M, Rerriminghorst U, Andersson M, Romling U (2009) Quantitative determination of cyclic diguanosine monophosphate concentrations in nucleotide extracts of bacteria by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal Biochem 386(1):53–58. doi:10.1016/j.ab.2008.12.013

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Zhou J, Donaldson GP, Nakayama S, Yan L, Lam Y-f, Lee VT, Sintim HS (2011) Conservative change to the phosphate moiety of cyclic diguanylic monophosphate remarkably affects its polymorphism and ability to bind DGC, PDE, and PilZ proteins. J Am Chem Soc 133(24):9320–9330

    Article  CAS  PubMed  Google Scholar 

  14. Nakayama S, Roelofs K, Lee VT, Sintim HO (2012) A C-di-GMP-proflavine-hemin supramolecular complex has peroxidase activity-implication for a simple colorimetric detection. Mol Biosyst 8(3):726–729

    Article  CAS  PubMed  Google Scholar 

  15. Roembke BT, Zhou J, Zheng Y, Sayre D, Lizardo A, Bernard L, Sintim HO (2014) A cyclic dinucleotide containing 2-aminopurine is a general fluorescent sensor for c-di-GMP and 3',3'-cGAMP. Mol Biosyst 10(6):1568–1575

    Article  CAS  PubMed  Google Scholar 

  16. Zhou J, Sayre DA, Zheng Y, Szmacinski H, Sintim HO (2014) Unexpected complex formation between coralyne and cyclic diadenosine monophosphate providing a simple fluorescent turn-on assay to detect this bacterial second messenger. Anal Chem 86(5):2412–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakayama S, Kelsey I, Wang JX, Sintim HO (2011) c-di-GMP can form remarkably stable G-quadruplexes at physiological conditions in the presence of some planar intercalators. Chem Comm 47(16):4766–4768

    Article  CAS  PubMed  Google Scholar 

  18. Gu H, Furukawa K, Breaker RR (2012) Engineered allosteric ribozymes that sense the bacterial second messenger cyclic diguanosyl 5'- monophosphate. Anal Chem 84(11):4935–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakayama S, Luo Y, Zhou J, Dayie TK, Sintim HO (2012) Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy. Chem Comm 48(72):9059–9061

    Article  CAS  PubMed  Google Scholar 

  20. Underwood AJ, Zhang Y, Metzger DW, Bai G (2014) Detection of cyclic di-AMP using a competitive ELISA with a unique pneumococcal cyclic di-AMP binding protein. J Microbiol Methods 107:58–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Venkatesan N, Seo YJ, Kim BH (2008) Quencher-free molecular beacons: a new strategy in fluorescence based nucleic acid analysis. Chem Soc Rev 37(4):648–663. doi:10.1039/b705468h

    Article  CAS  PubMed  Google Scholar 

  22. Börjesson K, Preus S, El-Sagheer AH, Brown T, Albinsson B, Wilhelmsson LM (2009) Nucleic acid base analog FRET-pair facilitating detailed structural measurements in nucleic acid containing systems. J Am Chem Soc 131(12):4288–4293. doi:10.1021/ja806944w

    Article  PubMed  Google Scholar 

  23. Wilson JN, Cho Y, Tan S, Cuppoletti A, Kool ET (2008) Quenching of fluorescent nucleobases by neighboring DNA: the “insulator” concept. ChemBioChem 9(2):279–285. doi:10.1002/cbic.200700381

    Article  CAS  PubMed  Google Scholar 

  24. Wilhelmsson LM (2010) Fluorescent nucleic acid base analogues. Q Rev Biophys 43(2):159–183. doi:10.1017/S0033583510000090

    Article  CAS  PubMed  Google Scholar 

  25. Singleton SF, Roca AI, Lee AM, Xiao J (2007) Probing the structure of RecA-DNA filaments. Advantages of a fluorescent guanine analog. Tetrahedron 63(17):3553–3566. doi:10.1016/j.tet.2006.10.092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sinkeldam RW, Greco NJ, Tor Y (2010) Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 110(5):2579–2619. doi:10.1021/cr900301e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Somsen O, Hoek V, Amerongen V (2005) Fluorescence quenching of 2-aminopurine in dinucleotides. Chem Phys Lett 402(1-3):61–65. doi:10.1016/j.cplett.2004.11.122

    Article  CAS  Google Scholar 

  28. Leonard NJ (1984) Etheno-substituted nucleotides and coenzymes: fluorescence and biological activity. CRC Crit Rev Biochem 15(2):125–199

    Article  CAS  PubMed  Google Scholar 

  29. Zhou J, Zheng Y, Roembke BT, Robinson SM, Opoku-Temeng C, Sayre DA, Sintim HO (2017) Fluorescent analogs of cyclic and linear dinucleotides as phosphodiesterase and oligoribonuclease activity probes. RSC Advances 7:5421–5426

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Science Foundation (CHE1307218 and CHE1636752), Purdue University. Plasmids were provided by Dr. Zhaoxun Liang (RocR plasmid), Dr. Ehud Banin (P. aeruginosa Orn plasmid), and Dr. Nicholas Dixon (E. coli and M. smegmatis Orn plasmids).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman O. Sintim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zhou, J., Opoku-Temeng, C., Sintim, H.O. (2017). Fluorescent 2-Aminopurine c-di-GMP and GpG Analogs as PDE Probes. In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7240-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7239-5

  • Online ISBN: 978-1-4939-7240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics