Skip to main content

Analysis of c-di-GMP Levels Synthesized by a Photoreceptor Protein in Response to Different Light Qualities Using an In Vitro Enzymatic Assay

  • Protocol
  • First Online:
c-di-GMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1657))

Abstract

Diguanylate cyclases are enzymes that use two GTP molecules to produce one molecule cyclic dimeric guanosine monophosphate (c-di-GMP). This cyclic dinucleotide is an ubiquitous prokaryotic second messenger that controls a variety of cell functions. Several proteins have been described which contain a photoreceptor domain fused to a diguanylate cyclase. The cyanobacterial light sensor Cph2 is responsible for the blue-light induced synthesis of c-di-GMP in Synechocystis sp. PCC 6803. Here, we provide a detailed protocol for an in vitro enzymatic assay with a purified photoreceptor protein using light as the crucial reaction parameter for c-di-GMP synthesis. The assay is accomplished under continuous illumination with light of different quality with inactivation of the enzyme by heat denaturation. Analytics are performed using HPLC-UV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross P, Weinhouse Y, Aloni Y et al (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281

    Article  CAS  PubMed  Google Scholar 

  2. Ha D, O’Toole G (2015) C-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiol Spectr 3:1–12

    Article  CAS  Google Scholar 

  3. Savakis P, De Causmaecker S, Angerer V et al (2012) Light-induced alteration of c-di-GMP level controls motility of Synechocystis sp. PCC 6803. Mol Microbiol 85:239–251

    Article  CAS  PubMed  Google Scholar 

  4. Römling U, Gomelsky M, Galperin M (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57:629–639

    Article  PubMed  Google Scholar 

  5. Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273

    Article  CAS  PubMed  Google Scholar 

  6. Römling U, Galperin M, Gomelsky M (2013) Cyclic di-GMP: the 25 years of a universal bacterial second messenger. MMBR 77:1–52

    Article  PubMed  PubMed Central  Google Scholar 

  7. Batschauer A (ed) (2003) Photoreceptors and light signaling. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  8. Briggs WR, Spudich JL (eds) (2005) Handbook of photosensory receptors. Wiley-VCH, Weinheim

    Google Scholar 

  9. Christie JM, Schwartz T, Bogomolni RA et al (2002) Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. Plant J 32:205–219

    Article  CAS  PubMed  Google Scholar 

  10. Gomelsky M, Klug G (2002) BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem 27:497–500

    Article  CAS  Google Scholar 

  11. Rockwell N, Su Y, Lagarias J (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ikeuchi M, Ishizuka T (2008) Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci 7:1159–1167

    Article  CAS  PubMed  Google Scholar 

  13. Agostoni M, Koestler C, Waters CM et al (2013) Occurrence of cyclic di GMP-modulating output domains in cyanobacteria: an illuminating perspective. mBio 4:1–10

    Article  Google Scholar 

  14. Tschowri N, Busse S, Hengge R (2009) The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes Dev 23:522–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomelsky M, Hoff WD (2011) Light helps bacteria make important lifestyle decisions. Trends Microbiol 19:441–448

    Article  CAS  PubMed  Google Scholar 

  16. Berg JM, Tymoczko JL, Gatto GJ Jr, Stryer L (2015) Biochemistry, 8th edn. Macmillan Education, New York

    Google Scholar 

  17. Voet D, Voet JG (2010) Biochemistry, 4th edn. John Wiley & Sons, Inc., New York

    Google Scholar 

  18. Strauss HM, Schmieder P, Hughes J (2005) Light-dependent dimerisation in the N-terminal sensory module of cyanobacterial phytochrome 1. FEBS Lett 579:3970–3974

    Article  CAS  PubMed  Google Scholar 

  19. Psakis G, Mailliet J, Lang C et al (2011) Signaling kinetics of cyanobacterial phytochrome Cph1, a light regulated histidine kinase. Biochemistry 50:6178–6188

    Article  CAS  PubMed  Google Scholar 

  20. Pratt LH (1975) Photochemistry of high molecular weight phytochrome in vitro. Photochem Photobiol 22:33–36

    Article  CAS  PubMed  Google Scholar 

  21. Pratt LH (1978) Molecular properties of phytochrome. Photochem Photobiol 27:81–105

    Article  CAS  Google Scholar 

  22. Manchinelli AL (1986) Comparison of spectral properties of phytochromes from different preparations. Plant Physiol 82:956–961

    Article  Google Scholar 

  23. Billo EJ (2001) Analysis of spectrophotometric data. In: Excel® for chemists: a comprehensive guide, 2nd edn. John Wiley & Sons, Inc., New York

    Chapter  Google Scholar 

  24. Anders K, von Stetten D, Mailliet J et al (2011) Spectroscopic and photochemical characterization of the red-light sensitive photosensory module of Cph2 from Synechocystis PCC 6803. Photochem Photobiol 87:160–173

    Article  CAS  PubMed  Google Scholar 

  25. Rockwell NC, Martin SS, Lagarias JC (2015) Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Photochem Photobiol 14:929–941

    Article  CAS  Google Scholar 

  26. Schwinte P, Gärtner W, Sharda S (2009) The photoreactions of recombinant phytochrome CphA from the cyanobacterium Calothrix PCC7601: a low-temperature UV–Vis and FTIR study. Photochem Photobiol 85:239–249

    Article  CAS  PubMed  Google Scholar 

  27. Kunkel T, Tomizama K, Kern R et al (1993) In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B. Eur J Biochem 215:587–594

    Article  CAS  PubMed  Google Scholar 

  28. Paul R, Weiser S, Amiot NC et al (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18:715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102:14422–14427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ryjenkow DA, Tarutina M, Moskvin OV et al (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187:1792–1798

    Article  Google Scholar 

Download references

Acknowledgment

V.A. acknowledges funding by the Jürgen-Manchot-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annegret Wilde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Angerer, V., Essen, LO., Wilde, A. (2017). Analysis of c-di-GMP Levels Synthesized by a Photoreceptor Protein in Response to Different Light Qualities Using an In Vitro Enzymatic Assay. In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7240-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7239-5

  • Online ISBN: 978-1-4939-7240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics