Methods to Visualize MAVS Subcellular Localization

  • Christine Vazquez
  • Dia C. Beachboard
  • Stacy M. HornerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1656)


The mitochondrial antiviral signaling (MAVS) protein is a central adaptor protein required for antiviral innate immune signaling. To facilitate its roles in innate immunity, MAVS localizes to multiple intracellular membranous compartments, including the mitochondria, the mitochondrial-associated ER membrane (MAM), and peroxisomes. Studies of MAVS function therefore often require an analysis of MAVS localization. To detect MAVS protein on intracellular membranes, biochemical fractionation to isolate MAMs, mitochondria, or peroxisomes can be used. Further, immunofluorescence with antibodies against specific membrane markers can be used to visualize MAVS distribution throughout the cell. Here, we describe the biochemical fractionation and immunofluorescence protocols used to detect MAVS subcellular localization.

Key words

MAVS Mitochondria MAM Peroxisomes Endoplasmic reticulum Fractionation Immunofluorescence Interferon 



We thank the Duke University Light Microscopy Core Facility for assistance with imaging and analysis. Research in the Horner laboratory is supported by funds from the National Institutes of Health (NIH) (R01AI125416 and R21AI124100) and a Duke School of Medicine Whitehead Scholarship. Additional funding sources include the Ford Foundation (CV) and NIH T32CA009111 (DCB).


  1. 1.
    Vazquez C, Horner SM (2015) MAVS coordination of antiviral innate immunity. J Virol 89(14):6974–6977. doi: 10.1128/JVI.01918-14CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669–682. doi:S0092-8674(05)00816-0 [pii] 10.1016/j.cell.2005.08.012CrossRefGoogle Scholar
  3. 3.
    Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988. doi:ni1243 [pii] 10.1038/ni1243CrossRefGoogle Scholar
  4. 4.
    Horner SM, Liu HM, Park HS, Briley J, Gale M Jr (2011) Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A 108(35):14590–14595. doi: 10.1073/pnas.1110133108CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141(4):668–681. doi:S0092-8674(10)00435-6 [pii] 10.1016/j.cell.2010.04.018CrossRefGoogle Scholar
  6. 6.
    Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, Ray SC, Gale M Jr, Lemon SM (2005) Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A 102(8):2992–2997. doi:0408824102 [pii]10.1073/pnas.0408824102CrossRefGoogle Scholar
  7. 7.
    Li XD, Sun L, Seth RB, Pineda G, Chen ZJ (2005) Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A 102(49):17717–17722. doi:0508531102 [pii] 10.1073/pnas.0508531102CrossRefGoogle Scholar
  8. 8.
    Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437(7062):1167–1172. doi:nature04193 [pii]10.1038/nature04193CrossRefGoogle Scholar
  9. 9.
    Loo YM, Owen DM, Li K, Erickson AK, Johnson CL, Fish PM, Carney DS, Wang T, Ishida H, Yoneyama M, Fujita T, Saito T, Lee WM, Hagedorn CH, Lau DT, Weinman SA, Lemon SM, Gale M Jr (2006) Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci U S A 103(15):6001–6006. doi:0601523103 [pii] 10.1073/pnas.0601523103CrossRefGoogle Scholar
  10. 10.
    Horner SM, Wilkins C, Badil S, Iskarpatyoti J, Gale M Jr (2015) Proteomic analysis of mitochondrial-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking. PLoS One 10(3):e0117963. doi: 10.1371/journal.pone.0117963CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bozidis P, Williamson CD, Colberg-Poley AM (2007) Isolation of endoplasmic reticulum, mitochondria, and mitochondria-associated membrane fractions from transfected cells and from human cytomegalovirus-infected primary fibroblasts. Curr Protoc Cell Biol Chapter 3:Unit 3 27. doi: 10.1002/0471143030.cb0327s37CrossRefGoogle Scholar
  12. 12.
    Graham JM (2001) Isolation of peroxisomes from tissues and cells by differential and density gradient centrifugation. Curr Protoc Cell Biol Chapter 3:Unit 3 5. doi: 10.1002/0471143030.cb0305s06Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Christine Vazquez
    • 1
  • Dia C. Beachboard
    • 1
  • Stacy M. Horner
    • 1
    • 2
    Email author
  1. 1.Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations