RNA PAMPs as Molecular Tools for Evaluating RIG-I Function in Innate Immunity

  • Renee C. Ireton
  • Courtney Wilkins
  • Michael GaleJr.Email author
Part of the Methods in Molecular Biology book series (MIMB, volume 1656)


Pathogen recognition receptors (PRR)s and their cognate pathogen-associated molecular pattern (PAMP) represent the basis of innate immune activation and immune response induction driven by the host-pathogen interaction that occurs during microbial infection in humans and other animals. For RNA virus infection such as hepatitis C virus (HCV) and others, specific motifs within viral RNA mark it as nonself and visible to the host as a PAMP through interaction with RIG-I-like receptors including retinoic inducible gene-I (RIG-I). Here, we present methods for producing and using HCV PAMP RNA as a molecular tool to study RIG-I and its signaling pathway, both in vitro and in vivo, in innate immune regulation.

Key words

RNA PAMP Innate immunity Rig-I Pathogen recognition receptor 


  1. 1.
    Odendall C, Kagan JC (2017) Activation and pathogenic manipulation of the sensors of the innate immune system. Microbes Infect 19:229–237. doi: 10.1016/j.micinf.2017.01.003CrossRefPubMedGoogle Scholar
  2. 2.
    Sellge G, Kufer TA (2015) PRR-signaling pathways: learning from microbial tactics. Semin Immunol 27(2):75–84. doi: 10.1016/j.smim.2015.03.009CrossRefPubMedGoogle Scholar
  3. 3.
    Luecke S, Paludan SR (2016) Molecular requirements for sensing of intracellular microbial nucleic acids by the innate immune system. Cytokine S1043-4666(16):30543–30549. doi: 10.1016/j.cyto.2016.10.003CrossRefGoogle Scholar
  4. 4.
    Collins SE, Mossman KL (2014) Danger, diversity and priming in innate antiviral immunity. Cytokine Growth Factor Rev 25(5):525–531. doi: 10.1016/j.cytogfr.2014.07.002CrossRefPubMedGoogle Scholar
  5. 5.
    Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4):803–814. doi: 10.1016/j.cell.2006.02.008CrossRefPubMedGoogle Scholar
  6. 6.
    Cook DE, Mesarich CH, Thomma BP (2015) Understanding plant immunity as a surveillance system to detect invasion. Annu Rev Phytopathol 53:541–563. doi: 10.1146/annurev-phyto-080614-120114CrossRefPubMedGoogle Scholar
  7. 7.
    Pasare C, Medzhitov R (2005) Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol 560:11–18. doi: 10.1007/0-387-24180-9_2CrossRefPubMedGoogle Scholar
  8. 8.
    Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735. doi: 10.1146/annurev-immunol-031210-101405CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692. doi: 10.1016/j.immuni.2011.05.003CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wilkins C, Gale M Jr (2010) Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol 22(1):41–47. doi: 10.1016/j.coi.2009.12.003CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kell AM, Gale M Jr (2015) RIG-I in RNA virus recognition. Virology 479-480:110–121. doi: 10.1016/j.virol.2015.02.017CrossRefPubMedGoogle Scholar
  12. 12.
    Ramos HJ, Gale M Jr (2011) RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 1(3):167–176. doi: 10.1016/j.coviro.2011.04.004CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chan YK, Gack MU (2015) RIG-I-like receptor regulation in virus infection and immunity. Curr Opin Virol 12:7–14. doi: 10.1016/j.coviro.2015.01.004CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu HM, Jiang F, Loo YM, Hsu S, Hsiang TY, Marcotrigiano J, Gale M Jr (2016) Regulation of retinoic acid inducible Gene-I (RIG-I) activation by the histone Deacetylase 6. EBioMedicine 9:195–206. doi: 10.1016/j.ebiom.2016.06.015CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chiang C, Gack MU (2017) Post-translational control of intracellular pathogen sensing pathways. Trends Immunol 38(1):39–52. doi: 10.1016/ Scholar
  16. 16.
    Chow KT, Gale M Jr (2015) SnapShot: interferon signaling. Cell 163(7):1808–1808. e1801. doi: 10.1016/j.cell.2015.12.008CrossRefPubMedGoogle Scholar
  17. 17.
    Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143:1–20. doi: 10.1196/annals.1443.020CrossRefPubMedGoogle Scholar
  18. 18.
    Kell A, Stoddard M, Li H, Marcotrigiano J, Shaw GM, Gale M Jr (2015) Pathogen-associated molecular pattern recognition of hepatitis C virus transmitted/founder variants by RIG-I is dependent on U-Core length. J Virol 89(21):11056–11068. doi: 10.1128/JVI.01964-15CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Uzri D, Gehrke L (2009) Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. J Virol 83(9):4174–4184. doi: 10.1128/JVI.02449-08CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schnell G, Loo YM, Marcotrigiano J, Gale M Jr (2012) Uridine composition of the poly-U/UC tract of HCV RNA defines non-self recognition by RIG-I. PLoS Pathog 8(8):e1002839. doi: 10.1371/journal.ppat.1002839CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr (2008) Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454(7203):523–527. doi: 10.1038/nature07106CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Friebe P, Boudet J, Simorre JP, Bartenschlager R (2005) Kissing-loop interaction in the 3′ end of the hepatitis C virus genome essential for RNA replication. J Virol 79(1):380–392. doi: 10.1128/JVI.79.1.380-392.2005CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Malathi K, Saito T, Crochet N, Barton DJ, Gale M Jr, Silverman RH (2010) RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. RNA 16(11):2108–2119. doi: 10.1261/rna.2244210CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Malathi K, Dong B, Gale M Jr, Silverman RH (2007) Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448(7155):816–819. doi: 10.1038/nature06042CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sumpter R Jr, Loo YM, Foy E, Li K, Yoneyama M, Fujita T, Lemon SM, Gale M Jr (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79(5):2689–2699. doi: 10.1128/JVI.79.5.2689-2699.2005CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Loo YM, Owen DM, Li K, Erickson AK, Johnson CL, Fish PM, Carney DS, Wang T, Ishida H, Yoneyama M, Fujita T, Saito T, Lee WM, Hagedorn CH, Lau DT, Weinman SA, Lemon SM, Gale M Jr (2006) Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sci U S A 103(15):6001–6006. doi: 10.1073/pnas.0601523103CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lau DT, Fish PM, Sinha M, Owen DM, Lemon SM, Gale M Jr (2008) Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients. Hepatology 47(3):799–809. doi: 10.1002/hep.22076CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Renee C. Ireton
    • 1
  • Courtney Wilkins
    • 1
  • Michael GaleJr.
    • 1
    Email author
  1. 1.Department of Immunology, Center for Innate Immunity and Immune DiseaseUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations