Advertisement

Epidemiological Methods

  • Biao Wang
  • Mark LoebEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1656)

Abstract

This chapter provides an overview of the most common epidemiological designs used in clinical studies to better understand innate anti-viral immunity. Studies to assess risk factors as well as interventions are described.

Key words

Cohort study Case control study Cross sectional study Randomized controlled trial 

References

  1. 1.
    Woodward M (2013) Epidemiology: study design and data analysis. CRC Press, Boca Raton, FLGoogle Scholar
  2. 2.
    MacMahon B, Pugh TF (1970) Epidemiology: principles and methods. Little, Brown, Boston, MAGoogle Scholar
  3. 3.
    Gerring J (2007) Case study research: principles and practices. Cambridge University Press, Cambridge, UKGoogle Scholar
  4. 4.
    Fauci AS, Mavilio D, Kottilil S (2005) NK cells in HIV infection: paradigm for protection or targets for ambush. Nat Rev Immunol 5(11):835–843CrossRefGoogle Scholar
  5. 5.
    McBean AM, Babish JD, Warren JL (1993) The impact and cost of influenza in the elderly. Arch Intern Med 153(18):2105–2111CrossRefGoogle Scholar
  6. 6.
    Falsey AR, Treanor JJ, Betts RF, Walsh EE (1992) Viral respiratory infections in the institutionalized elderly: clinical and epidemiologic findings. J Am Geriatr Soc 40(2):115–119CrossRefGoogle Scholar
  7. 7.
    Porta M (2014) A dictionary of epidemiology. Oxford University Press, Oxford, UKGoogle Scholar
  8. 8.
    Sedgwick P (2014) Retrospective cohort studies: advantages and disadvantages. BMJ 348:g1072. doi: 10.1136/bmj.g1072CrossRefGoogle Scholar
  9. 9.
    Sedgwick P (2013) Prospective cohort studies: advantages and disadvantages. BMJ 347:f6726CrossRefGoogle Scholar
  10. 10.
    Reilly JJ, Armstrong J, Dorosty AR et al (2005) Early life risk factors for obesity in childhood: cohort study. BMJ 330(7504):1357CrossRefGoogle Scholar
  11. 11.
    Benjamin EJ, Levy D, Vaziri SM, D'Agostino RB, Belanger AJ, Wolf PA (1994) Independent risk factors for atrial fibrillation in a population-based cohort: the Framingham heart study. JAMA 271(11):840–844CrossRefGoogle Scholar
  12. 12.
    Sidebotham P, Heron J, Team AS (2006) Child maltreatment in the “children of the nineties”: a cohort study of risk factors. Child Abuse Negl 30(5):497–522CrossRefGoogle Scholar
  13. 13.
    Coovadia HM, Rollins NC, Bland RM et al (2007) Mother-to-child transmission of HIV-1 infection during exclusive breastfeeding in the first 6 months of life: an intervention cohort study. Lancet 369(9567):1107–1116CrossRefGoogle Scholar
  14. 14.
    Schulz KF, Grimes DA (2002) Case-control studies: research in reverse. Lancet 359(9304):431–434CrossRefGoogle Scholar
  15. 15.
    Loeb M, McGeer A, McArthur M, Walter S, Simor AE (1999) Risk factors for pneumonia and other lower respiratory tract infections in elderly residents of long-term care facilities. Arch Intern Med 159(17):2058–2064CrossRefGoogle Scholar
  16. 16.
    Grimes DA, Schulz KF (2005) Compared to what? Finding controls for case-control studies. Lancet 365(9468):1429–1433CrossRefGoogle Scholar
  17. 17.
    Miettinen OS (1985) The “case-control” study: valid selection of subjects. J Chronic Dis 38(7):543–548CrossRefGoogle Scholar
  18. 18.
    Rothman KJ, Greenland S, Lash TL (2008) Case–control studies. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Lippincott Williams & Wilkins.Philadelphia, PAGoogle Scholar
  19. 19.
    BIAS WIR (1987) Recall bias: a proposal for assessment and control. Int J Epidemiol 16(2):167-170CrossRefGoogle Scholar
  20. 20.
    Schlesselman JJ (1982) Case-control studies: design, conduct, analysis. Oxford University Press, Oxford, UKGoogle Scholar
  21. 21.
    Pearce N (2016) Analysis of matched case-control studies. BMJ 352:i969CrossRefGoogle Scholar
  22. 22.
    Vandenbroucke JP, Pearce N (2012) Case–control studies: basic concepts. Int J Epidemiol 41(5):1480–1489CrossRefGoogle Scholar
  23. 23.
    Meldrum MLA (2000) Brief history of the randomized controlled trial: from oranges and lemons to the gold standard. Hematol Oncol Clin North Am 14(4):745–760CrossRefGoogle Scholar
  24. 24.
    Bridges CB, Thompson WW, Meltzer MI et al (2000) Effectiveness and cost-benefit of influenza vaccination of healthy working adults: a randomized controlled trial. JAMA 284(13):1655–1663CrossRefGoogle Scholar
  25. 25.
    Govaert TM, Thijs C, Masurel N, Sprenger M, Dinant G, Knottnerus J (1994) The efficacy of influenza vaccination in elderly individuals: a randomized double-blind placebo-controlled trial. JAMA 272(21):1661–1665CrossRefGoogle Scholar
  26. 26.
    Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33(4):492–503CrossRefGoogle Scholar
  27. 27.
    Belshe RB, Edwards KM, Vesikari T et al (2007) Live attenuated versus inactivated influenza vaccine in infants and young children. N Engl J Med 356(7):685–696CrossRefGoogle Scholar
  28. 28.
    Gerß JWO, Köpcke W (2010) Clinical trials and rare diseases. Rare Dis Epidemiol 686:173–190Google Scholar
  29. 29.
    Jadad AR, Enkin MW (2008) Bias in randomized controlled trials. In: randomized controlled trials: questions, answers, and musings, 2nd edn. Blackwell, Hoboken, NJ, pp 29–47Google Scholar
  30. 30.
    Jadad AR, Moore RA, Carroll D et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12CrossRefGoogle Scholar
  31. 31.
    Kaptchuk TJ (2001) The double-blind, randomized, placebo-controlled trial: gold standard or golden calf? J Clin Epidemiol 54(6):541–549CrossRefGoogle Scholar
  32. 32.
    Choudhary D, Garg PK (2011) Primary outcome in a randomized controlled trial: a critical issue. Saudi J Gastroenterol 17(5):369PubMedPubMedCentralGoogle Scholar
  33. 33.
    Rothwell P (2000) Responsiveness of outcome measures in randomised controlled trials in neurology. J Neurol Neurosurg Psychiatry 68(3):274–275CrossRefGoogle Scholar
  34. 34.
    Akl EA, Briel M, You JJ et al (2012) Potential impact on estimated treatment effects of information lost to follow-up in randomised controlled trials (LOST-IT): systematic review. BMJ 344:e2809CrossRefGoogle Scholar
  35. 35.
    Peduzzi P, Henderson W, Hartigan P, Lavori P (2002) Analysis of randomized controlled trials. Epidemiol Rev 24(1):26–38CrossRefGoogle Scholar
  36. 36.
    Furberg CD, Friedman LM (2012) Approaches to data analyses of clinical trials. Prog Cardiovasc Dis 54(4):330–334CrossRefGoogle Scholar
  37. 37.
    Armitage P (1991) Interim analysis in clinical trials. Stat Med 10(6):925–937CrossRefGoogle Scholar
  38. 38.
    Bartha E, Davidson T, Brodtkorb T-H, Carlsson P, Kalman S (2013) Value of information: interim analysis of a randomized, controlled trial of goal-directed hemodynamic treatment for aged patients. Trials 14(1):1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonCanada
  2. 2.Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonCanada
  3. 3.Department of Health Research Methods, Evidence, and Impact, McMaster Methods, Evidence, and ImpactMcMaster UniversityHamiltonCanada

Personalised recommendations