Discovery of Variants Underlying Host Susceptibility to Virus Infection Using Whole-Exome Sequencing

  • Gabriel A. Leiva-Torres
  • Nestor Nebesio
  • Silvia M. VidalEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1656)


The clinical course of any viral infection greatly differs in individuals. This variation results from various viral, host, and environmental factors. The identification of host genetic factors influencing inter-individual variation in susceptibility to several pathogenic viruses has tremendously increased our understanding of the mechanisms and pathways required for immunity. Next-generation sequencing of whole exomes represents a powerful tool in biomedical research. In this chapter, we briefly introduce whole-exome sequencing in the context of genetic approaches to identify host susceptibility genes to viral infections. We then describe general aspects of the workflow for whole-exome sequence analysis together with the tools and online resources that can be used to identify and annotate variant calls, and then prioritize them for their potential association to phenotypes of interest.

Key words

Host genetics Antiviral immunity Exome Whole-exome sequencing Sequence alignment Read depth Variant calling Variant annotation Gene annotation 


  1. 1.
    Casanova JL (2015) Human genetic basis of interindividual variability in the course of infection. Proc Natl Acad Sci U S A 112(51):E7118–E7127PubMedPubMedCentralGoogle Scholar
  2. 2.
    Herrington CS, Coates PJ, Duprex WP (2015) Viruses and disease: emerging concepts for prevention, diagnosis and treatment. J Pathol 235(2):149–152CrossRefGoogle Scholar
  3. 3.
    Zhang SY, Abel L, Casanova JL (2013) Mendelian predisposition to herpes simplex encephalitis. Handb Clin Neurol 112:1091–1097CrossRefGoogle Scholar
  4. 4.
    Dean M et al (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, multicenter AIDS cohort study, multicenter hemophilia cohort study, San Francisco City cohort, ALIVE study. Science 273(5283):1856–1862CrossRefGoogle Scholar
  5. 5.
    Lindesmith L et al (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9(5):548–553CrossRefGoogle Scholar
  6. 6.
    Whitley RJ (2006) Herpes simplex encephalitis: adolescents and adults. Antiviral Res 71(2-3):141–148CrossRefGoogle Scholar
  7. 7.
    Rozenberg F (2013) Acute viral encephalitis. Handb Clin Neurol 112:1171–1181CrossRefGoogle Scholar
  8. 8.
    Lafaille FG et al (2012) Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491(7426):769–773CrossRefGoogle Scholar
  9. 9.
    International HapMap, C (2005) A haplotype map of the human genome. Nature 437(7063):1299–1320CrossRefGoogle Scholar
  10. 10.
    Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefGoogle Scholar
  11. 11.
    Venter JC et al (2001) The sequence of the human genome. Science 291(5507):1304–1351CrossRefGoogle Scholar
  12. 12.
    Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363(2):166–176CrossRefGoogle Scholar
  13. 13.
    Ge D et al (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461(7262):399–401CrossRefGoogle Scholar
  14. 14.
    Suppiah V et al (2009) IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 41(10):1100–1104CrossRefGoogle Scholar
  15. 15.
    Tanaka Y et al (2009) Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 41(10):1105–1109CrossRefGoogle Scholar
  16. 16.
    Rauch A et al (2010) Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138(4):1338–1345. 1345 e1-7CrossRefGoogle Scholar
  17. 17.
    Thomas DL et al (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461(7265):798–801CrossRefGoogle Scholar
  18. 18.
    Sheahan T et al (2014) Interferon lambda alleles predict innate antiviral immune responses and hepatitis C virus permissiveness. Cell Host Microbe 15(2):190–202CrossRefGoogle Scholar
  19. 19.
    Abel L, Alcais A, Schurr E (2014) The dissection of complex susceptibility to infectious disease: bacterial, viral and parasitic infections. Curr Opin Immunol 30:72–78CrossRefGoogle Scholar
  20. 20.
    Loeb M (2013) Genetic susceptibility to West Nile virus and dengue. Public Health Genomics 16(1-2):4–8CrossRefGoogle Scholar
  21. 21.
    McLaren PJ, Carrington M (2015) The impact of host genetic variation on infection with HIV-1. Nat Immunol 16(6):577–583CrossRefGoogle Scholar
  22. 22.
    Conley ME, Casanova JL (2014) Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr Opin Immunol 30:17–23CrossRefGoogle Scholar
  23. 23.
    Fodil N, Langlais D, Gros P (2016) Primary Immunodeficiencies and inflammatory disease: a growing genetic intersection. Trends Immunol 37(2):126–140CrossRefGoogle Scholar
  24. 24.
    Stoddard JL et al (2014) Targeted NGS: a cost-effective approach to molecular diagnosis of PIDs. Front Immunol 5:531CrossRefGoogle Scholar
  25. 25.
    Boycott KM et al (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14(10):681–691CrossRefGoogle Scholar
  26. 26.
    Casanova JL (2015) Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci U S A 112(51):E7128–E7137PubMedPubMedCentralGoogle Scholar
  27. 27.
    Meyts I et al (2016) Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol 138(4):957–969CrossRefGoogle Scholar
  28. 28.
    Chou J, Ohsumi TK, Geha RS (2012) Use of whole exome and genome sequencing in the identification of genetic causes of primary immunodeficiencies. Curr Opin Allergy Clin Immunol 12(6):623–628CrossRefGoogle Scholar
  29. 29.
    Ciancanelli MJ et al (2015) Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348(6233):448–453CrossRefGoogle Scholar
  30. 30.
    Wu L et al (2015) Case-only exome sequencing and complex disease susceptibility gene discovery: study design considerations. J Med Genet 52(1):10–16CrossRefGoogle Scholar
  31. 31.
    Ezkurdia I et al (2014) Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet 23(22):5866–5878CrossRefGoogle Scholar
  32. 32.
    Ezkurdia I et al (2014) Analyzing the first drafts of the human proteome. J Proteome Res 13(8):3854–3855CrossRefGoogle Scholar
  33. 33.
    Sakharkar MK, Chow VT, Kangueane P (2004) Distributions of exons and introns in the human genome. In Silico Biol 4(4):387–393PubMedGoogle Scholar
  34. 34.
    Majewski J et al (2011) What can exome sequencing do for you? J Med Genet 48(9):580–589CrossRefGoogle Scholar
  35. 35.
    Ng SB et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276CrossRefGoogle Scholar
  36. 36.
    Genomes Project, C et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65CrossRefGoogle Scholar
  37. 37.
    Lek M et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291CrossRefGoogle Scholar
  38. 38.
    Casanova JL et al (2014) Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J Exp Med 211(11):2137–2149CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Pruitt KD et al (2014) RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42(Database issue):D756–D763CrossRefGoogle Scholar
  41. 41.
    Harrow J et al (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res 22(9):1760–1774CrossRefGoogle Scholar
  42. 42.
    Aken BL et al (2016) The Ensembl gene annotation system. Database (Oxford) 2016. doi: 10.1093/database/baw093 CrossRefGoogle Scholar
  43. 43.
    Hung JH, Weng Z (2016) Visualizing genomic annotations with the UCSC genome browser. Cold Spring Harb Protoc 2016(11). doi: 10.1101/pdb.prot093062. p. pdb prot093062CrossRefGoogle Scholar
  44. 44.
    Bodi K et al (2013) Comparison of commercially available target enrichment methods for next-generation sequencing. J Biomol Tech 24(2):73–86CrossRefGoogle Scholar
  45. 45.
    Chilamakuri CS et al (2014) Performance comparison of four exome capture systems for deep sequencing. BMC Genomics 15:449CrossRefGoogle Scholar
  46. 46.
    Clark MJ et al (2011) Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 29(10):908–914CrossRefGoogle Scholar
  47. 47.
    Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079CrossRefGoogle Scholar
  48. 48.
    DePristo MA et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498CrossRefGoogle Scholar
  49. 49.
    McKenna A et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303CrossRefGoogle Scholar
  50. 50.
    Liu X et al (2013) Variant callers for next-generation sequencing data: a comparison study. PLoS One 8(9):e75619CrossRefGoogle Scholar
  51. 51.
    Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8(3):186–194CrossRefGoogle Scholar
  52. 52.
    Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Available online at:
  53. 53.
    Burrows M, Wheeler DJ, (1994) A block-sorting lossless data compression algorithm. Technical report–CaliforniaDigital Equipment Corporation, Palo Alto, 124Google Scholar
  54. 54.
    Langmead B et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25CrossRefGoogle Scholar
  55. 55.
    Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large scale genome resequencing. PLoS One 4(11):e7767CrossRefGoogle Scholar
  56. 56.
    Lee WP et al (2014) MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping. PLoS One 9(3):e90581CrossRefGoogle Scholar
  57. 57.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760CrossRefGoogle Scholar
  58. 58.
    Shang J et al (2014) Evaluation and comparison of multiple aligners for next-generation sequencing data analysis. Biomed Res Int 2014:309650CrossRefGoogle Scholar
  59. 59.
    Koboldt DC et al (2010) Challenges of sequencing human genomes. Brief Bioinform 11(5):484–498CrossRefGoogle Scholar
  60. 60.
    Mills RE et al (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16(9):1182–1190CrossRefGoogle Scholar
  61. 61.
    Mullaney JM et al (2010) Small insertions and deletions (INDELs) in human genomes. Hum Mol Genet 19(R2):R131–R136CrossRefGoogle Scholar
  62. 62.
    Van der Auwera GA et al (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11 10 1–11 1033Google Scholar
  63. 63.
    Huang HW et al (2015) Evaluation of variant detection software for pooled next-generation sequence data. BMC Bioinformatics 16:235CrossRefGoogle Scholar
  64. 64.
    Cingolani P et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92CrossRefGoogle Scholar
  65. 65.
    Flicek P et al (2010) Ensembl's 10th year. Nucleic Acids Res 38(Database issue):D557–D562CrossRefGoogle Scholar
  66. 66.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164CrossRefGoogle Scholar
  67. 67.
    Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10(10):1556–1566CrossRefGoogle Scholar
  68. 68.
    Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081CrossRefGoogle Scholar
  69. 69.
    Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 76:7.20.1–7.20.41CrossRefGoogle Scholar
  70. 70.
    Siepel A, Pollard KS, Haussler D (2006) New methods for detecting lineage-specific selection. In: Apostolico A, Guerra C, Istrail S, Pevzner P, Waterman M (eds) Proceedings of the 10th international conference on research in computational molecular biology. Springer, Germany, pp. 190–205Google Scholar
  71. 71.
    Pollard KS et al (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20(1):110–121CrossRefGoogle Scholar
  72. 72.
    Cooper GM et al (2010) Single-nucleotide evolutionary constraint scores highlight disease-causing mutations. Nat Methods 7(4):250–251CrossRefGoogle Scholar
  73. 73.
    Kircher M et al (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3):310–315CrossRefGoogle Scholar
  74. 74.
    Itan Y et al (2015) The human gene damage index as a gene-level approach to prioritizing exome variants. Proc Natl Acad Sci U S A 112(44):13615–13620CrossRefGoogle Scholar
  75. 75.
    van der Velde KJ et al (2017) GAVIN: Gene-aware variant INterpretation for medical sequencing. Genome Biol 18(1):6CrossRefGoogle Scholar
  76. 76.
    Itan Y et al (2016) The mutation significance cutoff: gene-level thresholds for variant predictions. Nat Methods 13(2):109–110CrossRefGoogle Scholar
  77. 77.
    Day IN (2010) dbSNP in the detail and copy number complexities. Hum Mutat 31(1):2–4CrossRefGoogle Scholar
  78. 78.
    Sherry ST et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311CrossRefGoogle Scholar
  79. 79.
    Stenson PD et al (2014) The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133(1):1–9CrossRefGoogle Scholar
  80. 80.
    Fu W et al (2013) Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493(7431):216–220CrossRefGoogle Scholar
  81. 81.
    Karczewski KJ et al (2017) The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 45(D1):D840–D845CrossRefGoogle Scholar
  82. 82.
    Li H (2014) Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30(20):2843–2851CrossRefGoogle Scholar
  83. 83.
    Bao R et al (2014) Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing. Cancer Inform 13(Suppl 2):67–82PubMedPubMedCentralGoogle Scholar
  84. 84.
    Itan Y et al (2014) HGCS: an online tool for prioritizing disease-causing gene variants by biological distance. BMC Genomics 15:256CrossRefGoogle Scholar
  85. 85.
    Kanehisa M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361CrossRefGoogle Scholar
  86. 86.
    Croft D et al (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42(Database issue):D472–D477CrossRefGoogle Scholar
  87. 87.
    Bello SM, Smith CL, Eppig JT (2015) Allele, phenotype and disease data at mouse genome informatics: improving access and analysis. Mamm Genome 26(7-8):285–294CrossRefGoogle Scholar
  88. 88.
    Sayers EW et al (2010) Database resources of the national center for biotechnology information. Nucleic Acids Res 38(Database issue):D5–16CrossRefGoogle Scholar
  89. 89.
    Petryszak R et al (2016) Expression atlas update–an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res 44(D1):D746–D752CrossRefGoogle Scholar
  90. 90.
    Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26(7):873–881CrossRefGoogle Scholar
  91. 91.
    The UniProt, C (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169CrossRefGoogle Scholar
  92. 92.
    Szklarczyk D et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452CrossRefGoogle Scholar
  93. 93.
    Chen J et al (2009) ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37(Web Server issue):W305–W311CrossRefGoogle Scholar
  94. 94.
    Zuberi K et al (2013) GeneMANIA prediction server 2013 update. Nucleic Acids Res 41(Web Server issue):W115–W122CrossRefGoogle Scholar
  95. 95.
    Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872CrossRefGoogle Scholar
  96. 96.
    Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823CrossRefGoogle Scholar
  97. 97.
    Makarova KS et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9(6):467–477CrossRefGoogle Scholar
  98. 98.
    Hamazaki T et al (2017) Concise review: induced pluripotent stem cell research in the era of precision medicine. Stem Cells 35(3):545–550CrossRefGoogle Scholar
  99. 99.
    Nie J, Hashino E (2017) Organoid technologies meet genome engineering. EMBO Rep 18(3):367–376CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Gabriel A. Leiva-Torres
    • 1
    • 2
    • 3
  • Nestor Nebesio
    • 1
    • 2
    • 3
  • Silvia M. Vidal
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Human GeneticsMcGill UniversityMontrealCanada
  2. 2.McGill University Research Center on Complex TraitsMontrealCanada
  3. 3.Department of MedicineMcGill UniversityMontrealCanada

Personalised recommendations