Methods of Assessing STING Activation and Trafficking

  • Vladislav Pokatayev
  • Nan YanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1656)


The signaling adapter protein STING is crucial for the host immune response to cytosolic DNA and cyclic dinucleotides. Under basal conditions, STING resides on the endoplasmic reticulum (ER ) , but upon activation, it traffics through secretory pathway to cytoplasmic vesicles, where STING activates downstream immune signaling. Classical STING activation and trafficking are triggered by binding of cyclic dinucleotide ligands. STING signaling can also be activated by gain-of-function mutations that lead to constitutive trafficking of STING. These gain-of-function mutations are associated with several human diseases such as STING-associated vasculopathy with onset in infancy (SAVI), systemic lupus erythematosus (SLE), or familial chilblain lupus (FCL). This dynamic activation pathway presents a challenge to study. We describe methods here for measuring ligand-dependent and ligand-independent activation of STING signaling in HEK293T cells. We also describe a retroviral-based reconstitution assay to study STING protein trafficking and activation in immune competent cells such as mouse embryonic fibroblasts (MEF), which avoids the use of plasmid DNA. These methods will expedite research regarding STING trafficking and signaling dynamics in the settings of infection and autoimmune diseases.

Key words

Sting Interferon response Innate immunity Cytosolic DNA sensing 



This work is supported by US National Institute of Health (AI098569, AR067135 to N.Y.), UT Southwestern Immunology graduate program training grant (2T32AI005284 to V.P.), and Burroughs Wellcome Fund (N.Y.). The authors have no conflict of interest.


  1. 1.
    Barber GN (2015) STING: infection, inflammation and cancer. Nat Rev Immunol 15:760–770. doi: 10.1038/nri3921CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barber GN (2011) STING-dependent signaling. Nat Immunol 12:929–930. doi: 10.1038/ni.2118CrossRefPubMedGoogle Scholar
  3. 3.
    Dobbs N, Burnaevskiy N, Chen D et al (2015) STING activation by translocation from the ER is associated with infection and Autoinflammatory disease. Cell Host Microbe 18:157–168. doi: 10.1016/j.chom.2015.07.001CrossRefGoogle Scholar
  4. 4.
    Gao D, Wu J, Wu Y-T et al (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903–906. doi: 10.1126/science.1240933CrossRefPubMedGoogle Scholar
  5. 5.
    Li X-D, Wu J, Gao D et al (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341:1390–1394. doi: 10.1126/science.1244040CrossRefPubMedGoogle Scholar
  6. 6.
    Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93–103. doi: 10.1016/j.immuni.2005.12.003CrossRefPubMedGoogle Scholar
  7. 7.
    Collins AC, Cai H, Li T et al (2015) Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17:820–828. doi: 10.1016/j.chom.2015.05.005CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Watson RO, Bell SL, Macduff DA et al (2015) The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I Interferons and activate autophagy. Cell Host Microbe 17:811–819. doi: 10.1016/j.chom.2015.05.004CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Waßermann R, Gulen MF, Sala C et al (2015) Mycobacterium tuberculosis differentially activates cGAS- and Inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17:799–810. doi: 10.1016/j.chom.2015.05.003CrossRefPubMedGoogle Scholar
  10. 10.
    Liu Y, Jesus AA, Marrero B et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518. doi: 10.1056/NEJMoa1312625CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jeremiah N, Neven B, Gentili M et al (2014) Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 124:5516–5520. doi: 10.1172/JCI79100CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    König N, Fiehn C, Wolf C et al (2016) Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis 76:468–472. doi: 10.1136/annrheumdis-2016-209841CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations