Algorithm for the Automated Evaluation of NAT2 Genotypes

  • Georg MichaelEmail author
  • Ricarda Thier
  • Meinolf Blaszkewicz
  • Silvia Selinski
  • Klaus Golka
Part of the Methods in Molecular Biology book series (MIMB, volume 1655)


N-Acetyltransferase 2 (NAT2) genotyping by PCR and RFLP-based methods provides information on seven single nucleotide polymorphisms (SNPs) without deriving the chromosomal phase (haplotype). So genotyping results must be processed to get all possible NAT2 haplotype (or allele) combinations. Here we describe the procedure for genotyping and present a program based on Microsoft® Access® which automatically generates all possible haplotype pairs for a given unphased NAT2 genotype. NAT2 haplotypes are important to predict the NAT2 phenotype.

Key words

N-Acetyltransferase 2 Alleles Automated evaluation Computer program Genotyping Haplotype 

Supplementary material

394598_1_En_7_MOESM1_ESM.docx (17 kb)
Source Code_NAT2Genotyping (DOCX 17 kb)


  1. 1.
    Arylamine N-Acetyltransferase Nomenclature Committee.
  2. 2.
    Golka K, Wiese A, Assennato G, Bolt HM (2004) Occupational exposure and urological cancer. World J Urol 21:382–391CrossRefPubMedGoogle Scholar
  3. 3.
    Patillon B, Luisi P, Poloni ES, Boukouvala S, Darlu P, Genin E, Sabbagh A (2014) A homogenizing process of selection has maintained an "ultra-slow" acetylation NAT2 variant in humans. Hum Biol 86:185–214CrossRefPubMedGoogle Scholar
  4. 4.
    Selinski S, Blaszkewicz M, Ickstadt K, Hengstler JG, Golka K (2013) Refinement of the prediction of N-acetyltransferase 2 (NAT2) phenotypes with respect to enzyme activity and urinary bladder cancer risk. Arch Toxicol 87:2129–2139CrossRefPubMedGoogle Scholar
  5. 5.
    Schöps W, Jungmann O, Zumbe J, Zellner M, Hengstler JG, Golka K (2013) Assessment criteria for compensation of occupational bladder cancer. Front Biosci (Elite Ed) 5:653–661CrossRefGoogle Scholar
  6. 6.
    Schöps W, Jungmann OP, Zellner M, Zumbé J, Golka K (2016) Tumoren der ableitenden Harnwege Erkrankt durch berufliche Exposition. URO-NEWS 20(1):23–29Google Scholar
  7. 7.
    Luceri F, Moneti G, Pieraccini G (1994) Bestimmung des Amingehaltes im Zigarettenrauch. HP Peak 1:2–4Google Scholar
  8. 8.
    Hoffmann D, Hoffmann I (1997) The changing cigarette, 1950-1995. J Toxicol Environ Health 50:307–364CrossRefPubMedGoogle Scholar
  9. 9.
    Lang NP, Kadlubar FF (1991) Aromatic and heterocyclic amine metabolism and phenotyping in humans. Prog Clin Biol Res 372:33–47PubMedGoogle Scholar
  10. 10.
    Golka K, Prior V, Blaszkewicz M, Bolt HM (2002) The enhanced bladder cancer susceptibility of NAT2 slow acetylators towards aromatic amines: a review considering ethnic differences. Toxicol Lett 128:229–241CrossRefPubMedGoogle Scholar
  11. 11.
    Vineis P, Marinelli D, Autrup H, Brockmoller J, Cascorbi I, Daly AJ et al (2001) Smoking, occupation, N-acetyltransferase-2 and bladder cancer: a pooled analysis of genotyped studies. Cancer Epidemiol Biomark Prev 10:1249–1252Google Scholar
  12. 12.
    Zhu Z, Zhang J, Jiang W, Zhang X, Li Y, Xu X (2015) Risks on N-acetyltransferase 2 and bladder cancer: a meta-analysis. Onco Targets Ther 8:3715–3720PubMedPubMedCentralGoogle Scholar
  13. 13.
    Ovsiannikov D, Selinski S, Lehmann ML, Blaszkewicz M, Moormann O, Haenel MW et al (2012) Polymorphic enzymes, urinary bladder cancer risk, and structural change in the local industry. J Toxicol Environ Health A 75:557–565CrossRefPubMedGoogle Scholar
  14. 14.
    Krech E, Selinski S, Blaszkewicz M, Bürger H, Kadhum T, Hengstler JG, Truß MC, Golka K (2017) Urinary bladder cancer risk factors in an area of former coal, iron and steel industries in Germany. J Toxicol Environ Health A. in press. DOI:  10.1080/10937404.2017.1304719
  15. 15.
    Selinski S, Blaszkewicz M, Ickstadt K, Hengstler JG, Golka K (2014) Improvements in algorithms for phenotype inference: the NAT2 example. Curr Drug Metab 15:233–249CrossRefPubMedGoogle Scholar
  16. 16.
    Blaszkewicz M, Dannappel D, Thier R, Lewalter J (2004) N-Acetyltransferase 2 (genotyping). In: Angerer J, Müller M (eds) Analyses of hazardous substances in biological materials, Special issue: Marker of susceptibility, vol 9. Wiley-VCH, Weinheim, pp 135–163. Google Scholar
  17. 17.
    Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–998CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction. Am J Hum Genet 73:1162–1169CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li N, Stephens M (2003) Modelling linkage disequilibrium, and identifying recombination hotspots using SNP data. Genetics 165:2213–2233PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Georg Michael
    • 1
    Email author
  • Ricarda Thier
    • 2
    • 3
  • Meinolf Blaszkewicz
    • 2
  • Silvia Selinski
    • 2
  • Klaus Golka
    • 2
  1. 1.SteinenGermany
  2. 2.Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo)DortmundGermany
  3. 3.School of MedicineGriffith UniversitySouthportAustralia

Personalised recommendations