Defining the Pathways of Urogenital Schistosomiasis-Associated Urothelial Carcinogenesis through Transgenic and Bladder Wall Egg Injection Models

  • Evaristus C. Mbanefo
  • Michael H. HsiehEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1655)


Urogenital schistosomiasis (infection with Schistosoma haematobium) is a major cause of bladder carcinogenesis. However, the exact mechanisms of the sequelae leading up to the development of bladder cancer are poorly understood, mainly because of a dearth of tractable mouse models. We developed a mouse model of urogenital schistosomiasis through intramural injection of parasite eggs into the bladder wall to mimic the trapping of parasite eggs in the bladder. This approach recapitulates many of the sequelae observed in infected humans. Here, we describe procedures for utilizing this surgical technique in combination with well-established transgenic mouse strains to dissect the role of cancer-related genes in the initiation and establishment of bladder carcinogenesis. The described method utilizes CRE-mediated flox activity to render mice p53 haploinsufficient before challenging them with bladder wall egg injection. These techniques are potentially amenable to studying the role of other pro-carcinogenic and cancer suppressor gene(s) in urogenital schistosomiasis-associated urothelial carcinogenesis.

Key words

Bladder cancer Urogenital schistosomiasis Bladder wall injection Genetic manipulation CRE recombinase p53 



This work was supported by NIH R56AI119168. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the funders. The funders had no role in the preparation of the manuscript and the decision to publish. We appreciate the significant contributions by the previous Hsieh laboratory members and collaborators in the described projects, including but not limited to Chi-Ling Fu, Jared Honeycutt, Justin Odegaard, Olfat Hamman, and De’Broski R. Herbert.


  1. 1.
    IARC (1994) Monograph on the evaluation of carcinogenic risks to humans: schistosomes, liver flukes and helicobacter pylori. WHO: International Agency for Research on Cancer 61:9–175Google Scholar
  2. 2.
    Khaled H (2013) Schistosomiasis and cancer in Egypt: review. J Adv Res 4(5):461–466. doi: 10.1016/j.jare.2013.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Conti SL, Honeycutt J, Odegaard JI et al (2015) Alterations in DNA methylation may be the key to early detection and treatment of schistosomal bladder cancer. PLoS Negl Trop Dis 9(6):e0003696. doi: 10.1371/journal.pntd.0003696 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chung KT (2013) The etiology of bladder cancer and its prevention. J Cancer Sci Ther 5(10):346–361. doi: 10.4172/1948-5956.1000226 CrossRefGoogle Scholar
  5. 5.
    Rosin MP, Saad el Din Zaki S, Ward AJ et al (1994) Involvement of inflammatory reactions and elevated cell proliferation in the development of bladder cancer in schistosomiasis patients. Mutat Res 305(2):283–292CrossRefPubMedGoogle Scholar
  6. 6.
    Colley DG, Secor WE (2014) Immunology of human schistosomiasis. Parasite Immunol 36(8):347–357. doi: 10.1111/pim.12087 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Odegaard JI, Hsieh MH (2014) Immune responses to Schistosoma haematobium infection. Parasite Immunol 36(9):428–438. doi: 10.1111/pim.12084 CrossRefPubMedGoogle Scholar
  8. 8.
    Honeycutt J, Hammam O, Hsieh MH (2015) Schistosoma haematobium egg-induced bladder urothelial abnormalities dependent on p53 are modulated by host sex. Exp Parasitol 158:55–60. doi: 10.1016/j.exppara.2015.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rinaldi G, Young ND, Honeycutt JD et al (2015) New research tools for urogenital Schistosomiasis. J Infect Dis 211(6):861–869. doi: 10.1093/infdis/jiu527 CrossRefPubMedGoogle Scholar
  10. 10.
    Honeycutt J, Hammam O, CL F et al (2014) Controversies and challenges in research on urogenital schistosomiasis-associated bladder cancer. Trends Parasitol 30(7):324–332. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fu C-L, Odegaard JI, Herbert DBR et al (2012) A novel mouse model of Schistosoma haematobium egg-induced immunopathology. PLoS Pathog 8:e1002605. doi: 10.1371/journal.ppat.1002605 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fu CL, Apelo CA, Torres B et al (2011) Mouse bladder wall injection. J Vis Exp (53):e2523. doi: 10.3791/2523
  13. 13.
    Richardson ML, CL F, Pennington LF et al (2014) A new mouse model for female genital schistosomiasis. PLoS Negl Trop Dis 8(5):e2825. doi: 10.1371/journal.pntd.0002825 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Harding SD, Armit C, Armstrong J et al (2011) The GUDMAP database—an online resource for genitourinary research. Development 138(13):2845–2853. doi: 10.1242/dev.063594 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tucker MS, Karunaratne LB, Lewis FA et al (2013) Schistosomiasis. Curr Protoc Immuno 103:Unit 19.1. doi: 10.1002/0471142735.im1901s103 Google Scholar
  16. 16.
    Botros SS, Hammam OA, El-Lakkany NM et al (2008) Schistosoma haematobium (Egyptian strain): rate of development and effect of praziquantel treatment. J Parasitol 94:386–394. doi: 10.1645/GE-1270.1 CrossRefPubMedGoogle Scholar
  17. 17.
    Le TL, Boyett DM, Hurley-Novatny A et al (2015) Hamster weight patterns predict the intensity and course of Schistosoma haematobium infection. J Parasitol 101(5):542–548. doi: 10.1645/14-600 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Children’s National Medical CenterWashingtonUSA
  2. 2.Biomedical Research InstituteRockvilleUSA

Personalised recommendations