Advertisement

Orthotopic Mouse Models of Urothelial Cancer

  • Wolfgang JägerEmail author
  • Igor Moskalev
  • Peter Raven
  • Akihiro Goriki
  • Samir Bidnur
  • Peter C. Black
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1655)

Abstract

Orthotopic mouse models of urothelial cancer are essential for testing novel therapies and molecular manipulations of cell lines in vivo. These models are either established by orthotopic inoculation of human (xenograft models) or murine tumor cells (syngeneic models) in immunocompromised or immune competent mice. Current techniques rely on inoculation by intravesical instillation or direct injection into the bladder wall. Alternative models include the induction of murine bladder tumors by chemical carcinogens (BBN) or genetic engineering (GEM).

Key words

Chemical carcinogens Intramural injection Intravesical instillation Orthotopic models Transgenic models Tumor cell inoculation Xenografts 

References

  1. 1.
    Ding J, Xu D, Pan C, Ye M, Kang J, Bai Q, Qi J (2014) Current animal models of bladder cancer: awareness of translatability (Review). Exp Ther Med 8:691–699CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kubota T (1994) Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J Cell Biochem 56:4–8CrossRefPubMedGoogle Scholar
  3. 3.
    Chan E, Patel A, Heston W, Larchian W (2009) Mouse orthotopic models for bladder cancer research. BJU Int 104:1286–1291CrossRefPubMedGoogle Scholar
  4. 4.
    Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cutz JC, Guan J, Bayani J, Yoshimoto M, Xue H, Sutcliffe M, English J, Flint J, LeRiche J, Yee J, Squire JA, Gout PW, Lam S, Wang YZ (2006) Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: potential models for studying tumor progression-related changes. Clinical Cancer Res 12(13):4043–4054CrossRefGoogle Scholar
  6. 6.
    Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt AW, Anderson S, Moskalev I, Haegert A, Alshalalfa M, Erho N, Davicioni E, Fazli L, Li E, Collins C, Wang Y, Black PC (2015) Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget 6(25):21522–21532CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pan CX, Zhang H, Tepper CG, Lin TY, Davis RR, Keck J, Ghosh PM, Gill P, Airhart S, Bult C, Gandara DR, Liu E, de Vere White RW (2015) Development and characterization of bladder cancer patient-derived Xenografts for molecularly guided targeted therapy. PLoS One 10(8):e0134346CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Summerhayes IC, Franks LM (1979) Effects of donor age on neoplastic transformation of adult mouse bladder epithelium in vitro. J Natl Cancer Inst 62:1017–1023PubMedGoogle Scholar
  9. 9.
    Arantes-Rodrigues R, Pinto-Leite R, da Costa RG, Colaço A, Lopes C, Oliveira P (2013) Cytogenetic characterization of an N-butyl-N-(4-hydroxybutyl) nitrosamine-induced mouse papillary urothelial carcinoma. Tumour Biol 34:2691–2696CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang ZT, Pak J, Shapiro E, Sun TT, Wu XR (1999) Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res 59:3512–3517PubMedGoogle Scholar
  11. 11.
    Hadaschik BA, Black PC, Sea JC, Metwalli AR, Fazli L, Dinney CP, Gleave ME, So AI (2007) A validated mouse model for orthotopic bladder cancer using transurethral tumour inoculation and bioluminescence imaging. BJU Int 100:1377–1384CrossRefPubMedGoogle Scholar
  12. 12.
    Jäger W, Horiguchi Y, Shah J, Hayashi T, Awrey S, Gust KM, Hadaschik BA, Matsui Y, Anderson S, Bell RH, Ettinger S, So AI, Gleave ME, Lee IL, Dinney CP, Tachibana M, McConkey DJ, Black PC (2013) Hiding in plain view: genetic profiling reveals decades old cross contamination of bladder cancer cell line KU7 with HeLa. J Urol 190(4):1404–1409CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Horiguchi Y, Larchian WA, Kaplinsky R, Fair WR, Heston WD (2000) Intravesical liposome-mediated interleukin-2 gene therapy in orthotopic murine bladder cancer model. Gene Ther 7:844–851CrossRefPubMedGoogle Scholar
  14. 14.
    Dinney CP, Fishbeck R, Singh RK, Eve B, Pathak S, Brown N, Xie B, Fan D, Bucana CD, Fidler IJ, Killion JJ (1995) Isolation and characterization of metastatic variants from human transitional cell carcinoma passaged by orthotopic implantation in athymic nude mice. J Urol 154:532–1538CrossRefGoogle Scholar
  15. 15.
    Black PC, Shetty A, Brown GA, Esparza-Coss E, Metwalli AR, Agarwal PK, McConkey DJ, Hazle JD, Dinney CP (2010) Validating bladder cancer xenograft bioluminescence with magnetic resonance imaging: the significance of hypoxia and necrosis. BJU Int 106:1799–1804CrossRefPubMedGoogle Scholar
  16. 16.
    Jager W, Moskalev I, Janssen C, Hayashi T, Awrey S, Gust KM, So AI, Zhang K, Fazli L, Li E, Thuroff JW, Lange D, Black PC (2013) Ultrasound-guided intramural inoculation of orthotopic bladder cancer xenografts: a novel high-precision approach. PLoS One 8(3):e59536CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hadaschik BA, Zhang K, So AI, Fazli L, Jia W, Bell JC, Gleave ME, Rennie PS (2008) Oncolytic vesicular stomatitis viruses are potent agents for intravesical treatment of high-risk bladder cancer. Cancer Res 68(12):4506–4510CrossRefPubMedGoogle Scholar
  18. 18.
    Adam L, Black PC, Kassouf W, Eve B, McConkey D, Munsell MF, Benedict WF, Dinney CP (2007) Adenoviral mediated interferon-alpha 2b gene therapy suppresses the pro-angiogenic effect of vascular endothelial growth factor in superficial bladder cancer. J Urol 177:1900–1906CrossRefPubMedGoogle Scholar
  19. 19.
    Cho EJ, Yang J, Mohamedali KA, Lim EK, Kim EJ, Farhangfar CJ, Suh JS, Haam S, Rosenblum MG, Huh YM (2011) Sensitive angiogenesis imaging of orthotopic bladder tumors in mice using a selective magnetic resonance imaging contrast agent containing VEGF121/rGel. Investig Radiol 46:441–449CrossRefGoogle Scholar
  20. 20.
    Ding J, Xu D, Pan C, Ye M, Kang J, Bai Q, Qi J (2014) Current animal models of bladder cancer: awareness of translatability (Review). Exp Ther Med 8:691–699CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vasconcelos-Nobrega C, Colaco A, Lopes C, Oliveira PA (2012) Review: BBN as an urothelial carcinogen. In Vivo 26:727–739PubMedGoogle Scholar
  22. 22.
    He Z, Kosinska W, Zhao ZL, Wu XR, Guttenplan JB (2012) Tissue-specific mutagenesis by N-butyl-N-(4-hydroxybutyl)nitrosamine as the basis for urothelial carcinogenesis. Mutat Res 742:92–95CrossRefPubMedGoogle Scholar
  23. 23.
    Lubet RA, Huebner K, Fong LY, Altieri DC, Steele VE, Kopelovich L, Kavanaugh C, Juliana MM, Soong SJ, Grubbs CJ (2005) 4- Hydroxybutyl(butyl)nitrosamine-induced urinary bladder cancers in mice: characterization of FHIT and survivin expression and chemopreventive effects of indomethacin. Carcinogenesis 26(3):571–578CrossRefPubMedGoogle Scholar
  24. 24.
    Shin K, Lim A, Odegaard JI, Honeycutt JD, Kawano S, Hsieh MH, Beachy PA (2014) Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nat Cell Biol 16(5):469–478CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hicks RM, Wakefield JS (1972) Rapid induction of bladder cancer in rats with N-methyl-N-nitrosourea. Chem Biol Interact 5(2):139–152CrossRefPubMedGoogle Scholar
  26. 26.
    Ayala de la Peña F, Kanasaki K, Kanasaki M, Tangirala N, Maeda G, Kalluri R (2011) Loss of p53 and acquisition of angiogenic microRNA profile are insufficient to facilitate progression of bladder urothelial carcinoma in situ to invasive carcinoma. J Biol Chem 286:20778–20787CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wu XR (2009) Biology of urothelial tumorigenesis: insights from genetically engineered mice. Cancer Metastasis Rev 28:281–290CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sharpless NE, Depinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5:741–754CrossRefPubMedGoogle Scholar
  29. 29.
    Politi K, Pao W (2011) How genetically engineered mouse tumor models provide insights into human cancers. J Clin Oncol 29:2273–2281CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang ZT, Pak J, Shapiro E, Sun TT, Wu XR (1999) Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res 59:3512–3517PubMedGoogle Scholar
  31. 31.
    Ayala de la peña F, Kanasaki K, Kanasaki M, Tangirala N, Maeda G, Kalluri R (2012) Loss of p53 and acquisition of angiogenic microRNA profile are insufficient to facilitate progression of bladder urothelial carcinoma in situ to invasive carcinoma. Biol Chem 286(23):20778–20787CrossRefGoogle Scholar
  32. 32.
    Stone R 2nd, Sabichi AL, Gill J, Lee IL, Adegboyega P, Dai MS, Loganantharaj R, Trutschl M, Cvek U, Clifford JL (2010) Identification of genes correlated with early-stage bladder cancer progression. Cancer Prev Res 3:776–786CrossRefGoogle Scholar
  33. 33.
    Zhang ZT, Pak J, Huang HY, Shapiro E, Sun TT, Pellicer A, Wu XR (2001) Role of ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 20(16):1973–1980CrossRefPubMedGoogle Scholar
  34. 34.
    Cheng J, Huang H, Zhang ZT, Shapiro E, Pellicer A, Sun TT, Wu XR (2002) Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Res 62:4157–4163PubMedGoogle Scholar
  35. 35.
    Spiess PE, Czerniak B (2006) Dual-track pathway of bladder carcinogenesis: practical implications. Arch Pathol Lab Med 130(6):844–852PubMedGoogle Scholar
  36. 36.
    Gao J, Huang HY, Pak J, Cheng J, Zhang ZT, Shapiro E, Pellicer A, Sun TT, Wu XR (2004) p53 deficiency provokes urothelial proliferation and synergizes with activated ha-ras in promoting urothelial tumorigenesis. Oncogene 23:687–696CrossRefPubMedGoogle Scholar
  37. 37.
    Mo L, Zheng X, Huang HY, Shapiro E, Lepor H, Cordon-Cardo C, Sun TT, Wu XR (2007) Hyperactivation of ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. J Clin Invest 117:314–325CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang ZT, Pak J, Huang HY, Shapiro E, Sun TT, Pellicer A, Wu XR (2001) Role of ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 20:1973–1980CrossRefPubMedGoogle Scholar
  39. 39.
    Ahmad I, Patel R, Liu Y, Singh LB, Taketo MM, Wu XR, Leung HY, Sansom OJ (2011) Ras mutation cooperates with β-catenin activation to drive bladder tumourigenesis. Cell Death Dis 2:e124CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ahmad I, Morton JP, Singh LB, Radulescu SM, Ridgway RA, Patel S, Woodgett J, Winton DJ, Taketo MM, Wu XR, Leung HY, Sansom OJ (2011) β -catenin activation Synergises with PTEN loss to cause bladder cancer formation. Oncogene 30:178–189CrossRefPubMedGoogle Scholar
  41. 41.
    Lin C, Yin Y, Stemler K, Humphrey P, Kibel AS, Mysorekar IU, Ma L (2013) Constitutive β-catenin activation induces male-specific tumorigenesis in the bladder urothelium. Cancer Res 73:5914–5925CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rampias T, Vgenopoulou P, Avgeris M, Polyzos A, Stravodimos K, Valavanis C, Scorilas A, Klinakis A (2014) A new tumor suppressor role for the Notch pathway in bladder cancer. Nat Med 20:1199–1205CrossRefPubMedGoogle Scholar
  43. 43.
    Puzio-Kuter AM, Castillo-Martin M, Kinkade CW, Wang X, Shen TH, Matos T, Shen MM, Cordon-Cardo C, Abate-Shen C (2009) Inactivation of p53 and Pten promotes invasive bladder cancer. Genes Dev 23:675–680CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Santos, M. et al. (2015) NIH Public Access 74:6565–6577.Google Scholar
  45. 45.
    Ahmad I, Sansom OJ, Leung HY (2012) Exploring molecular genetics of bladder cancer: lessons learned from mouse models. Dis Model Mech 5:323–332CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Wolfgang Jäger
    • 1
    Email author
  • Igor Moskalev
    • 2
  • Peter Raven
    • 2
  • Akihiro Goriki
    • 2
  • Samir Bidnur
    • 3
  • Peter C. Black
    • 3
  1. 1.Department of Urology and Paediatric UrologyJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.The Vancouver Prostate CentreUniversity of British ColumbiaVancouverCanada
  3. 3.Department of Urologic SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations