Advertisement

In Vitro Differentiation and Propagation of Urothelium from Pluripotent Stem Cell Lines

  • Stephanie L. Osborn
  • Eric A. KurzrockEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1655)

Abstract

Bioengineering of bladder tissue, particularly for those patients who have advanced bladder disease, requires a source of urothelium that is healthy, capable of significant proliferation in vitro and immunologically tolerated upon transplant. As pluripotent stem cells have the potential to fulfill such criteria, they provide a critical cell source from which urothelium might be derived in vitro and used clinically. Herein, we describe the in vitro differentiation of urothelium from the H9 human embryonic stem cell (hESC) line through the definitive endoderm (DE) phase via selective culture techniques. The protocol can be used to derive urothelium from other hESCs or human-induced pluripotent stem cells.

Key words

Induced pluripotent stem cells Human embryonic stem cells Urothelium Bladder bioengineering Definitive endoderm Activin A Uroplakins 

References

  1. 1.
    Kurzrock EA, Baskin LS, Kogan BA (1998) Gastrocystoplasty: long-term followup. J Urol 160(6 Pt 1):2182–2186PubMedGoogle Scholar
  2. 2.
    McDougal WS (1992) Metabolic complications of urinary intestinal diversion. J Urol 147(5):1199–1208CrossRefPubMedGoogle Scholar
  3. 3.
    Nguyen HT, Kurzrock EA (2004) The effect of enterocystoplasty on skeletal development in children. In: Stone AR (ed) Urinary diversion, 2nd edn. Martin Dunitz, LondonGoogle Scholar
  4. 4.
    Khandelwal P, Abraham SN, Apodaca G (2009) Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol 297(6):F1477–F1501. doi: 10.1152/ajprenal.00327.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75(11):1153–1165. doi: 10.1038/ki.2009.73 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hu P, Meyers S, Liang FX, Deng FM, Kachar B, Zeidel ML, Sun TT (2002) Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am J Physiol Renal Physiol 283(6):F1200–F1207. doi: 10.1152/ajprenal.00043.2002 CrossRefPubMedGoogle Scholar
  7. 7.
    Subramaniam R, Hinley J, Stahlschmidt J, Southgate J (2011) Tissue engineering potential of urothelial cells from diseased bladders. J Urol 186(5):2014–2020. doi: 10.1016/j.juro.2011.07.031 CrossRefPubMedGoogle Scholar
  8. 8.
    Horst M, Madduri S, Gobet R, Sulser T, Milleret V, Hall H, Atala A, Eberli D (2013) Engineering functional bladder tissues. J Tissue Eng Regen Med 7(7):515–522. doi: 10.1002/term.547 CrossRefPubMedGoogle Scholar
  9. 9.
    Staack A, Hayward SW, Baskin LS, Cunha GR (2005) Molecular, cellular and developmental biology of urothelium as a basis of bladder regeneration. Differentiation 73(4):121–133. doi: 10.1111/j.1432-0436.2005.00014.x CrossRefPubMedGoogle Scholar
  10. 10.
    Osborn SL, Thangappan R, Luria A, Lee JH, Nolta J, Kurzrock EA (2014) Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Transl Med 3(5):610–619. doi: 10.5966/sctm.2013-0131 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Loring JF, Peterson SE (eds) (2012) Human stem cell manual: a laboratory guide, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23(12):1534–1541. doi: 10.1038/nbt1163 CrossRefPubMedGoogle Scholar
  13. 13.
    Kang M, Kim HH, Han YM (2014) Generation of bladder urothelium from human pluripotent stem cells under chemically defined serum- and feeder-free system. Int J Mol Sci 15(5):7139–7157. doi: 10.3390/ijms15057139 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sun TT (2006) Altered phenotype of cultured urothelial and other stratified epithelial cells: implications for wound healing. Am J Physiol Renal Physiol 291(1):F9–21. doi: 10.1152/ajprenal.00035.2006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of UrologyUniversity of California, Davis School of MedicineSacramentoUSA
  2. 2.Stem Cell Program, Institute for Regenerative CuresUniversity of California, Davis Medical CenterSacramentoUSA

Personalised recommendations