Advertisement

Urothelial Carcinoma Stem Cells: Current Concepts, Controversies, and Methods

  • Jiri HatinaEmail author
  • Hamendra Singh Parmar
  • Michaela Kripnerova
  • Anastasia Hepburn
  • Rakesh Heer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1655)

Abstract

Cancer stem cells are defined as a self-renewing and self-protecting subpopulation of cancer cells able to differentiate into morphologically and functionally diverse cancer cells with a limited lifespan. To purify cancer stem cells, two basic approaches can be applied, the marker-based approach employing various more of less-specific cell surface marker molecules and a marker-free approach largely based on various self-protection mechanisms. Within the context of urothelial carcinoma, both methods could find use. The cell surface markers have been mainly derived from the urothelial basal cell, a probable cell of origin of muscle-invasive urothelial carcinoma, with CD14, CD44, CD90, and 67LR representing successful examples of this strategy. The marker-free approaches involve side population sorting, for which a detailed protocol is provided, as well as the Aldefluor assay, which rely on a specific overexpression of efflux pumps or the detoxification enzyme aldehyde dehydrogenase, respectively, in stem cells. These assays have been applied to both non-muscle-invasive and muscle-invasive bladder cancer samples and cell lines. Urothelial carcinoma stem cells feature a pronounced heterogeneity as to their molecular stemness mechanisms. Several aspects of urothelial cancer stem cell biology could enter translational development rather soon, e.g., a specific CD44+-derived gene expression signature able to identify non-muscle-invasive bladder cancer patients with a high risk of progression, or deciphering a mechanism responsible for repopulating activity of urothelial carcinoma stem cells within the context of therapeutic resistance.

Key words

Cancer stem cells Urothelial regeneration Urothelium stem cells Urothelial carcinoma Urothelial carcinoma cells of origin Urothelial carcinoma stem cell markers Side population Drug resistance 

Notes

Acknowledgments

The work has been supported by the projects of Faculty of Medicine in Pilsen SVV-2016-260283 and SVV-2017-260393, and by JGW Patterson Foundation.

References

  1. 1.
    Hatina J, Fernandes MI, Hoffmann M, Zeimet AG (2013) Cancer stem cells – basic biological properties and experimental approaches. In: Encyclopedia of Life Sciences. John Wiley & Sons, Chichester. doi: 10.1002/9780470015902.a0021164.pub2 Google Scholar
  2. 2.
    Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14:275–291CrossRefPubMedGoogle Scholar
  3. 3.
    Hatina J, Schulz WA (2012) Stem cells in the biology of normal urothelium and urothelial carcinoma. Neoplasma 59:728–736CrossRefPubMedGoogle Scholar
  4. 4.
    Ho PL, Kurtova A, Chan KS (2012) Normal and neoplastic urothelial stem cells: getting to the root of the problem. Nat Rev Urol 9:583–594CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kurzrock EA, Lieu DK, Degraffenried LA, Chan CW, Isseroff RR (2008) Label-retaining cells of the bladder: candidate urothelial stem cells. Am J Physiol Renal Physiol 294:F1415–F1421CrossRefPubMedGoogle Scholar
  6. 6.
    Yamany T, Van Batavia J, Mendelsohn C (2014) Formation and regeneration of the urothelium. Curr Opin Organ Transplant 19:323–330CrossRefPubMedGoogle Scholar
  7. 7.
    Gaisa NT, Graham TA, McDonald SA, Cañadillas-Lopez S, Poulsom R, Heidenreich A, Jakse G, Tadrous PJ, Knuechel R, Wright NA (2011) The human urothelium consists of multiple clonal units, each maintained by a stem cell. J Pathol 225:163–171CrossRefPubMedGoogle Scholar
  8. 8.
    Shin K, Lim A, Odegaard JI, Honeycutt JD, Kawano S, Hsieh MH, Beachy PA (2014) Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nat Cell Biol 16:469–478CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Van Batavia J, Yamany T, Molotkov A, Dan H, Mansukhani M, Batourina E, Schneider K, Oyon D, Dunlop M, Wu XR, Cordon-Cardo C, Mendelsohn C (2014) Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol 16:982–991CrossRefPubMedGoogle Scholar
  10. 10.
    Dancik GM, Owens CR, Iczkowski KA, Theodorescu D (2014) A cell of origin gene signature indicates human bladder cancer has distinct cellular progenitors. Stem Cells 32:974–982CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mysorekar IU, Isaacson-Schmid M, Walker JN, Mills JC, Hultgren SJ (2009) Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe 5:463–475CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shin K, Lee J, Guo N, Kim J, Lim A, Qu L, Mysorekar IU, Beachy PA (2011) Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472:110–114CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shin K, Lim A, Zhao C, Sahoo D, Pan Y, Spiekerkoetter E, Liao JC, Beachy PA (2014) Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell 26:521–533CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti J Jr, Chang HY, van de Rijn M, Shortliffe L, Weissman IL (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A 106:14016–14021CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    He X, Marchionni L, Hansel DE, Yu W, Sood A, Yang J, Parmigiani G, Matsui W, Berman DM (2009) Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. Stem Cells 27:1487–1495CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL, Chan KS (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517:209–213CrossRefPubMedGoogle Scholar
  17. 17.
    Cheah MT, Chen JY, Sahoo D, Contreras-Trujillo H, Volkmer AK, Scheeren FA, Volkmer JP, Weissman IL (2015) CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A 112:4725–4730CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Volkmer JP, Sahoo D, Chin RK, Ho PL, Tang C, Kurtova AV, Willingham SB, Pazhanisamy SK, Contreras-Trujillo H, Storm TA, Lotan Y, Beck AH, Chung BI, Alizadeh AA, Godoy G, Lerner SP, van de Rijn M, Shortliffe LD, Weissman IL, Chan KS (2012) Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc Natl Acad Sci U S A 109:2078–2083CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fei DL, Sanchez-Mejias A, Wang Z, Flaveny C, Long J, Singh S, Rodriguez-Blanco J, Tokhunts R, Giambelli C, Briegel KJ, Schulz WA, Gandolfi AJ, Karagas M, Zimmers TA, Jorda M, Bejarano P, Capobianco AJ, Robbins DJ (2012) Hedgehog signaling regulates bladder cancer growth and tumorigenicity. Cancer Res 72:4449–4458CrossRefPubMedGoogle Scholar
  20. 20.
    Fei DL, Li H, Kozul CD, Black KE, Singh S, Gosse JA, DiRenzo J, Martin KA, Wang B, Hamilton JW, Karagas MR, Robbins DJ (2010) Activation of Hedgehog signaling by the environmental toxicant arsenic may contribute to the etiology of arsenic-induced tumors. Cancer Res 70:1981–1988CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ferreira-Teixeira M, Parada B, Rodrigues-Santos P, Alves V, Ramalho JS, Caramelo F, Sousa V, Reis F, Gomes CM (2015) Functional and molecular characterization of cancer stem-like cells in bladder cancer: a potential signature for muscle-invasive tumors. Oncotarget 6:36185–36201CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Aaboe M, Birkenkamp-Demtroder K, Wiuf C, Sørensen FB, Thykjaer T, Sauter G, Jensen KM, Dyrskjøt L, Ørntoft T (2006) SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res 66:3434–3442CrossRefPubMedGoogle Scholar
  23. 23.
    Shen H, Blijlevens M, Yang N, Frangou C, Wilson KE, Xu B, Zhang Y, Zhang L, Morrison CD, Shepherd L, Hu Q, Zhu Q, Wang J, Liu S, Zhang J (2015) Sox4 expression confers bladder cancer stem cell properties and predicts for poor patient outcome. Int J Biol Sci 11:1363–1375CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K, Miyazono K (2011) Glioma-initiating cells retain their tumorigenicity through integration of the sox axis and Oct4 protein. J Biol Chem 286:41434–41441CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ling S, Chang X, Schultz L, Lee TK, Chaux A, Marchionni L, Netto GJ, Sidransky D, Berman DM (2011) An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer Res 71:3812–3821CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hepburn AC, Veeratterapillay R, Williamson SC, El-Sherif A, Sahay N, Thomas HD, Mantilla A, Pickard RS, Robson CN, Heer R (2012) Side population in human non-muscle invasive bladder cancer enriches for cancer stem cells that are maintained by MAPK signalling. PLoS One 7:e50690CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Koch A, Hatina J, Rieder H, Seifert HH, Huckenbeck W, Jankowiak F, Florl AR, Stoehr R, Schulz WA (2012) Discovery of TP53 splice variants in two novel papillary urothelial cancer cell lines. Cell Oncol (Dordr) 35:243–257CrossRefPubMedGoogle Scholar
  28. 28.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806CrossRefPubMedGoogle Scholar
  29. 29.
    Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC, Gallardo TD, Garry DJ (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265:262–275CrossRefPubMedGoogle Scholar
  30. 30.
    Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833CrossRefPubMedGoogle Scholar
  31. 31.
    Golebiewska A, Brons NH, Bjerkvig R, Niclou SP (2011) Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8:136–147CrossRefPubMedGoogle Scholar
  32. 32.
    Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219CrossRefPubMedGoogle Scholar
  33. 33.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101:14228–14233CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Locke M, Heywood M, Fawell S, Mackenzie IC (2005) Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 65:8944–8950CrossRefPubMedGoogle Scholar
  35. 35.
    Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, Kim JW, Gatza M, Murphy S, Nevins JR (2009) Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene 28:2796–2805CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM, Dallaglio K (2015) Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect Tissue Res 56:414–425CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Seifert HH, Meyer A, Cronauer MV, Hatina J, Müller M, Rieder H, Hoffmann MJ, Ackermann R, Schulz WA (2007) A new and reliable culture system for superficial low-grade urothelial carcinoma of the bladder. World J Urol 25:297–302CrossRefPubMedGoogle Scholar
  38. 38.
    Waickman AT, Park JY, Park JH (2016) The common γ-chain cytokine receptor: tricks-and-treats for T cells. Cell Mol Life Sci 73:253–269CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Jiri Hatina
    • 1
    Email author
  • Hamendra Singh Parmar
    • 1
  • Michaela Kripnerova
    • 1
  • Anastasia Hepburn
    • 2
  • Rakesh Heer
    • 2
  1. 1.Faculty of Medicine in Pilsen, Institute of BiologyCharles University in PraguePlzenCzech Republic
  2. 2.Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical SchoolNewcastle UniversityNewcastle Upon TyneUK

Personalised recommendations