Skip to main content

Multiplex Real-Time PCR Using Encoded Microparticles for MicroRNA Profiling

  • Protocol
  • First Online:
Book cover Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1654))

Abstract

Multiplex quantitative real-time PCR (qPCR), which measures multiple DNAs in a given sample, has drawn unprecedented attention as a means of verifying the rapidly increasing genetic targets in a single phenotype. We report the detailed procedure of a readily extensible qPCR for multiple microRNA (miRNA) expression analysis using microparticles of primer-immobilized networks as discrete reactors. Individual particles are identified by two-dimensional codes engraved into the particles. It allows high-fidelity signal analysis in the multiplex real-time PCR. During the course of PCR, the amplicons accumulate in the volume of the particles with amplification efficiency over 95%. Tens of miRNAs can be quantitatively profiled in a single PCR reaction of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meola N, Gennarino VA, Banfi S (2009) microRNAs and genetic diseases. PathoGenetics 2(1):7. doi:10.1186/1755-8417-2-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ono K, Kuwabara Y, Han JH (2011) MicroRNAs and cardiovascular diseases. FEBS J 278(10):1619–1633. doi:10.1111/j.1742-4658.2011.08090.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roberts APE, Lewis AP, Jopling CL (2011) The role of MicroRNAs in viral infection. Prog Mol Biol Transl 102:101–139. doi:10.1016/B978-0-12-415795-8.00002-7

    CAS  Google Scholar 

  4. Nunez YO, Mayfield RD (2012) Understanding alcoholism through microRNA signatures in brains of human alcoholics. Front Genet 3:43. doi:10.3389/fgene.2012.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deiuliis JA (2016) MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes 40(1):88–101. doi:10.1038/ijo.2015.170

    Article  CAS  Google Scholar 

  6. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44(1):31–38. doi:10.1016/j.ymeth.2007.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlson CS, Emerson RO, Sherwood AM, Desmarais C, Chung MW, Parsons JM, Steen MS, LaMadrid-Herrmannsfeldt MA, Williamson DW, Livingston RJ, Wu D, Wood BL, Rieder MJ, Robins H (2013) Using synthetic templates to design an unbiased multiplex PCR assay. Nat Commun 4:2680. doi:10.1038/ncomms3680

    Article  PubMed  Google Scholar 

  8. Jung S, Kim J, Lee DJ, Oh EH, Lim H, Kim KP, Choi N, Kim TS, Kim SK (2016) Extensible multiplex real-time PCR of MicroRNA using Microparticles. Sci Rep 6:22975. doi:10.1038/srep22975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oh EH, Jung S, Kim WJ, Kim KP, Kim SK (2017) Microparticle-based RT-qPCR for highly selective rare mutation detection. Biosens Bioelectron 87(15):229–235. doi:10.1016/j.bios.2016.08.057

    Article  CAS  PubMed  Google Scholar 

  10. Choi NW, Kim J, Chapin SC, Duong T, Donohue E, Pandey P, Broom W, Hill WA, Doyle PS (2012) Multiplexed detection of mRNA using porosity-tuned hydrogel Microparticles. Anal Chem 84(21):9370–9378. doi:10.1021/ac302128u

    Article  CAS  PubMed  Google Scholar 

  11. Rutledge RG, Cote C (2003) Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31(16):e93. doi:10.1093/nar/gng093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Durbeej B, Eriksson LA (2002) Reaction mechanism of thymine dimer formation in DNA induced by UV light. J Photoch Photobio A 152(1–3):95–101. doi:10.1016/S1010-6030(02)00180-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant No. HI13C2262). This work was also supported by KIST through the Institutional Program (Project No. 2E25590) and Open Research Program (Project No. 2E25722).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Kyung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Jung, S., Kim, S.K. (2017). Multiplex Real-Time PCR Using Encoded Microparticles for MicroRNA Profiling. In: Kaufmann, M., Klinger, C., Savelsbergh, A. (eds) Functional Genomics. Methods in Molecular Biology, vol 1654. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7231-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7231-9_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7230-2

  • Online ISBN: 978-1-4939-7231-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics