Skip to main content

Application of Synthetic Tumor-Specific Promoters Responsive to the Tumor Microenvironment

  • Protocol
  • First Online:
Mammalian Synthetic Promoters

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1651))

Abstract

Activity of endogenous promoters can be altered by including additional responsive elements (REs). These elements can be responsive to features of the tumor environment or alternatively to signaling pathways specifically activated in cancer cells. These REs incorporated into tumor-specific promoters can improve cancer targeting, the replicative capacity, and lytic activity of conditionally replicative adenovirus. Here we outline an approach to incorporate hypoxia and inflammation REs into a specific fragment of the SPARC promoter and the steps to clone a nucleosome positioning sequence (NPS ) identified in the osteocalcin promoter that contains a Wnt RE upstream of a heterologous synthetic promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Martiniello-Wilks R, Garcia-Aragon J, Daja MM, Russell P, Both GW, Molloy PL, Lockett LJ, Russell PJ (1998) In vivo gene therapy for prostate cancer: preclinical evaluation of two different enzyme-directed prodrug therapy systems delivered by identical adenovirus vectors. Hum Gene Ther 9:1617–1626

    Article  CAS  Google Scholar 

  2. Onimaru M, Ohuchida K, Mizumoto K, Nagai E, Cui L, Toma H, Takayama K, Matsumoto K, Hashizume M, Tanaka M (2010) hTERT-promoter-dependent oncolytic adenovirus enhances the transduction and therapeutic efficacy of replication-defective adenovirus vectors in pancreatic cancer cells. Cancer Sci 101:735–742

    Google Scholar 

  3. Cafferata EG, Maccio DR, Lopez MV, Viale DL, Carbone C, Mazzolini G, Podhajcer OL (2009) A novel A33 promoter-based conditionally replicative adenovirus suppresses tumor growth and eradicates hepatic metastases in human colon cancer models. Clin Cancer Res 15:3037–3049

    Article  CAS  Google Scholar 

  4. Cao G, Kuriyama S, Gao J, Kikukawa M, Cui L, Nakatani T, Zhang X, Tsujinoue H, Pan X, Fukui H et al (1999) Effective and safe gene therapy for colorectal carcinoma using the cytosine deaminase gene directed by the carcinoembryonic antigen promoter. Gene Ther 6:83–90

    Article  CAS  Google Scholar 

  5. Osaki T, Tanio Y, Tachibana I, Hosoe S, Kumagai T, Kawase I, Oikawa S, Kishimoto T (1994) Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by cell type-specific expression of herpes simplex virus thymidine kinase gene. Cancer Res 54:5258–5261

    CAS  PubMed  Google Scholar 

  6. Ledda F, Bravo AI, Adris S, Bover L, Mordoh J, Podhajcer OL (1997) The expression of the secreted protein acidic and rich in cysteine (SPARC ) is associated with the neoplastic progression of human melanoma. J Invest Dermatol 108:210–214

    Google Scholar 

  7. Framson PE, Sage EH (2004) SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 92:679–690

    Google Scholar 

  8. Lopez MV, Rivera AA, Viale DL, Benedetti L, Cuneo N, Kimball KJ, Wang M, Douglas JT, Zhu ZB, Bravo AI et al (2012) A tumor-stroma targeted oncolytic adenovirus replicated in human ovary cancer samples and inhibited growth of disseminated solid tumors in mice. Mol Ther 20:2222–2233

    Article  CAS  Google Scholar 

  9. Powis G, Kirkpatrick L (2004) Hypoxia inducible factor-1alpha as a cancer drug target. Mol Cancer Ther 3:647–654

    CAS  PubMed  Google Scholar 

  10. Cao Y, Linden P, Shima D, Browne F, Folkman J (1996) In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J Clin Invest 98:2507–2511

    Article  CAS  Google Scholar 

  11. Adriaansen J, Fallaux FJ, de Cortie CJ, Vervoordeldonk MJ, Tak PP (2007) Local delivery of beta interferon using an adeno-associated virus type 5 effectively inhibits adjuvant arthritis in rats. J Gen Virol 88:1717–1721

    Article  CAS  Google Scholar 

  12. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274:787–789

    Article  Google Scholar 

  13. Blagodatski A, Poteryaev D, Katanaev VL (2014) Targeting the Wnt pathways for therapies. Mol Cell Ther 2:28

    Google Scholar 

  14. Song L, Li ZY, Liu WP, Zhao MR (2015) Crosstalk between Wnt /beta-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy. Cancer Biol Ther 16:1–7

    Google Scholar 

  15. Bai L, Morozov AV (2010) Gene regulation by nucleosome positioning. Trends Genet 26:476–483

    Article  CAS  Google Scholar 

  16. Peckham HE, Thurman RE, Fu Y, Stamatoyannopoulos JA, Noble WS, Struhl K, Weng Z (2007) Nucleosome positioning signals in genomic DNA. Genome Res 17:1170–1177

    Article  CAS  Google Scholar 

  17. Lopez MV, Viale DL, Cafferata EG, Bravo AI, Carbone C, Gould D, Chernajovsky Y, Podhajcer OL (2009) Tumor associated stromal cells play a critical role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses. PLoS One 4:e5119

    Article  Google Scholar 

  18. Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, Van Ormondt H, Hoeben RC, Van Der Eb AJ (1996) Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 7:215–222

    Article  CAS  Google Scholar 

  19. Khoury M, Adriaansen J, Vervoordeldonk MJ, Gould D, Chernajovsky Y, Bigey P, Bloquel C, Scherman D, Tak PP, Jorgensen C et al (2007) Inflammation-inducible anti-TNF gene expression mediated by intra-articular injection of serotype 5 adeno-associated virus reduces arthritis. J Gene Med 9:596–604

    Article  CAS  Google Scholar 

  20. Subang MC, Fatah R, Bright C, Blanco P, Berenstein M, Wu Y, Podhajcer OL, Winyard PG, Chernajovsky Y, Gould D (2012) A novel hybrid promoter responsive to pathophysiological and pharmacological regulation. J Mol Med (Berl) 90:401–411

    Article  CAS  Google Scholar 

  21. Gutierrez J, Sierra J, Medina R, Puchi M, Imschenetzky M, van Wijnen A, Lian J, Stein G, Stein J, Montecino M (2000) Interaction of CBF alpha/AML/PEBP2 alpha transcription factors with nucleosomes containing promoter sequences requires flexibility in the translational positioning of the histone octamer and exposure of the CBF alpha site. Biochemistry 39:13565–13574

    Article  Google Scholar 

  22. Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, Sharff KA, Luu HH, Haydon RC, Kinzler KW et al (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2:1236–1247

    Article  CAS  Google Scholar 

  23. Breyer B, Jiang W, Cheng H, Zhou L, Paul R, Feng T, He TC (2001) Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther 1:149–162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo G. Cafferata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Cafferata, E.G., Lopez, M.V., Nuñez, F.J., Maenza, M.A.R., Podhajcer, O.L. (2017). Application of Synthetic Tumor-Specific Promoters Responsive to the Tumor Microenvironment. In: Gould, D. (eds) Mammalian Synthetic Promoters. Methods in Molecular Biology, vol 1651. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7223-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7223-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7221-0

  • Online ISBN: 978-1-4939-7223-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics